Sale!

LG1093AC05 Single channel control card Honeywell

Original price was: $1,888.00.Current price is: $1,688.00.

Model:LG1093AC05

New original warranty for one year

Brand: Honeywell

Contact person: Mr. Lai

WeChat:17750010683

WhatsApp:+86 17750010683

Email: 3221366881@qq.com

Category:
Phone: +86 17750010683
Email: 3221366881@qq.com
connect:Mr. Lai

Description

Product parameters
Model: LG1093AC05
Brand: Honeywell
Size: 10cm x 10cm x 30cm
Weight: 1.2KG
Color: White Black
Working voltage: 5V
Working temperature: -10 ℃ to 50 ℃
Communication interface: RS232, RS485, CAN
Product specifications
Support for MODBUS protocol
Support hardware flow control
Using high-speed CMOS devices
Support for data caching
application area
LG1093AC05 is mainly used in the field of industrial automation, such as DCS PLCs, industrial controllers, robots, etc.
LG1093AC05 is mainly used in steel manufacturing, thermal power generation, hydroelectric power generation, glass manufacturing, paper mills, cement factories, petrochemicals
Chemical fiber, pharmaceutical manufacturing, rubber, plastics, ferrous metal food, machine tools, specialized equipment, transportation vehicles, mechanical equipment
Electronic communication equipment, instruments and beverages, tobacco processing, clothing, textiles, leather, wood processing, furniture, printing, etc
Model: LG1093AC05 Brand: ABB Archive Function: Communication Function Product Certification: Qualified
Working voltage: 24V Internal variable: No pattern Type: Vector diagram Applicable range: Industrial type
Number of screens: 4 Imported or not: Yes Customized for processing: No
Alarm function: Product name: Module Input voltage: 24V Rated current: 5A
Special service: including postage. Remarks: one-year warranty. Operation method: remote control
Applicable motor: servo motor system memory: 8MB Display color: 99.9 color gamut
Power voltage: 220V Input method: Current Input Material code: 65218
Communication interface: HDMI interface Working temperature: 60 Material number 26854 Other functions Analog communication
Output frequency: 50HZ Rated voltage: 24V Alarm type: Light alarm
Disconnect capacity: 0.01 Vector graph support: Minimum number of packages supported: 1
Display type: IPS USB interface quantity: 2 interfaces Memory card slot: 2
Panel protection level: 3 Memory expansion capacity: 128MB User script support: supported
Speed response frequency: 1MS Working environment temperature: -40 to 100 Insulation withstand voltage test: Passed
Third party communication products: ABB controllers available for sale in: nationwide
Product Instructions
Please install LG1093AC05 correctly on the device and connect the communication interface cable properly.
Please refer to the user manual for operating LG1093AC05 to ensure proper use.
Product Introduction
LG1093AC05 is a high-performance industrial automation communication module that uses high-speed CMOS devices, supports MODBUS protocol, and supports
hardware flow control. It is an ideal choice in the field of industrial automation.

(5) Perform predictive maintenance, analyze machine operating conditions, determine the main
causes of failures, and predict component failures to avoid unplanned downtime.

Traditional quality improvement programs include Six Sigma, Deming Cycle, Total Quality Management (TQM), and Dorian Scheinin’s
Statistical Engineering (SE) [6]. Methods developed in the 1980s and 1990s are typically applied to small amounts
of data and find univariate relationships between participating factors. The use of the MapReduce paradigm to simplify data processing in
large data sets and its further development have led to the mainstream proliferation of big data analytics [7]. Along with the development of
machine learning technology, the development of big data analytics has provided a series of new tools that can be applied to manufacturing
analysis. These capabilities include the ability to analyze gigabytes of data in batch and streaming modes, the ability to find complex multivariate
nonlinear relationships among many variables, and machine learning algorithms that separate causation from correlation.

Millions of parts are produced on production lines, and data on thousands of process and quality measurements are collected for them, which is
important for improving quality and reducing costs. Design of experiments (DoE), which repeatedly explores thousands of causes through
controlled experiments, is often too time-consuming and costly. Manufacturing experts rely on their domain knowledge to detect key
factors that may affect quality and then run
DoEs based on these factors. Advances in big data analytics and machine learning enable the detection of critical factors that effectively
impact quality and yield. This, combined with domain knowledge, enables rapid detection of root causes of failures. However,
there are some unique data science challenges in manufacturing.

(1) Unequal costs of false alarms and false negatives. When calculating accuracy, it must be recognized that false alarms
and false negatives may have unequal costs. Suppose a false negative is a bad part/instance that was wrongly predicted to
be good. Additionally, assume that a false alarm is a good part that was incorrectly predicted as bad. Assuming further that
the parts produced are safety critical, incorrectly predicting that bad parts are good (false negatives) can put human lives
at risk. Therefore, false negatives can be much more costly than false alarms. This trade-off needs to be considered when
translating business goals into technical goals and candidate evaluation methods.

Contact person: Mr. Lai
Mobil:17750010683
WeChat:17750010683
WhatsApp:+86 17750010683
Email: 3221366881@qq.com

https://www.xmamazon.com

https://www.xmamazon.com

Home

Home

https://www.plcdcs.com/

www.module-plc.com/

https://www.ymgk.com

330703-000-070-10-02-05  Bently Nevada  11mm probe
330106-05-30-10-02-00  Bently Nevada  3300 XL 8 mm reverse mount probe
330104-00-05-10-02-CN  Bently Nevada  3300 XL 8mm access probe
330130-040-00-00  Benty Nevada   Extension cable
330103-00-04-10-02-00  Bently Nevada  3300 XL 8mm access probe
3300/16-11-01-03-00-00-01  Benty Nevada    XY/Gap dual vibration monitor
Pilz  301140  Pilz  Secure bus input/output module
146031-02  Benty Nevada  100Base-FX(Optical fiber)I/O module
125720-01  Benty Nevada  Data Manager I/O module
128240-01  Benty Nevada  Preloader/seismic monitor I/O module
086349-002  ABB  Control card module
84152-01  Benty Nevada  Input/output and recording terminal/four relay modul
6410-009-N-N-N  PACIFIC SCIENTIFIC  Pulse encoder
1785-L40C15  Allen-Bradley  programmable logic controller
1785-CHBM  Allen-Bradley  backup module
1794-ASB  Allen-Bradley  remote I/O communication adapter module
1771-WH  Allen-Bradley  PLC-5 field wiring arm for I/O modules
1771-OX   Allen-Bradley  power contact output module
1771-OFE2  Allen-Bradley  analog output module
1771-IXE  Allen-Bradley  Thermocouple input module
1771-IBD  Allen-Bradley  Digital DC input module
1771-A2B  Allen-Bradley  I/O chassis
1769-L23E-QB1B  Allen-Bradley  package controller
1768-L43  Allen-Bradley  programmable logic controller
1761-NET-ENI  Allen-Bradley  Ethernet /IP communication interface
1756-TBS6H  Allen-Bradley  detachable junction board
1756-PSCA2A  Allen-Bradley  case adapter module
1756-PA75  Allen-Bradley  Redundant DC power module
1756-PA72  Allen-Bradley   Standard power supply
1756-L73XT  Allen-Bradley  ControlLogi-XT controller
1756-L61  Allen-Bradley  ControlLogix controller
1756-CNB  Allen-Bradley   interface module
1747-L542  Allen-Bradley  SLC 5/04 processor
1747-L553  Allen-Bradley   SLC 5/05 processor
1747-L541  Allen-Bradley   SLC 5/04 processor
1747-CP3  Allen-Bradley  programmer cable
1747-ASB  Allen-Bradley  remote I/O adapter module
1747-ACNR15  Allen-Bradley   Control network input/output adapter
1746-P2  Allen-Bradley  SLC 500 power supply
1746-P1  Allen-Bradley   SLC 500 power supply
1746-OX8  Allen-Bradley  SLC 500 digital contact output module

Reviews

There are no reviews yet.

Be the first to review “LG1093AC05 Single channel control card Honeywell”

Your email address will not be published. Required fields are marked *