Description
IC695CPU315 Canopen Interface Module
высотой 3U, расположенный в раме управления под DSPX.
волоконно – оптический разъем на передней панели и передаются в модуль обнаружения заземления.
ABB: Запасные части для промышленных роботов серии DSQC, Bailey INFI 90, IGCT, например: 5SHY6545L0001 AC1027001R0101 5SXE10 – 0181, 5SHY3545 L0009, 5SHI3545L0010 3BHB013088 R0001 3BHE009681R0101 GVC750BE101, PM866, PM861K01, PM864, PM510V16, PPD512, PPPD113, PP836A, P865A, 877, PPP881, PPPP885, PPSL500000 4 3BHL00390P0104 5SGY35L4510 и т.д.
General Electric: запасные части, такие как модули, карты и приводы. Например: VMVME – 7807, VMVME – 7750, WES532 – 111, UR6UH, SR469 – P5 – HI – A20, IS230SRTDH2A, IS220PPDAH1B, IS215UCVEH2A, IC698CPE010, IS200SRTDH2ACB и т.д.
Система Bently Nevada: 350 / 3300 / 1900, предохранительные зонды и т.д., например: 3500 / 22M, 3500 / 32, 3500 / 15, 3500 / 23500 / 42M, 1900 / 27 и т.д.
Системы Invis Foxboro: Серия I / A, управление последовательностью FBM, трапециевидное логическое управление, обработка отзыва событий, DAC,
обработка входных / выходных сигналов, передача и обработка данных, такие как FCP270 и FCP280, P0904HA, E69F – TI2 – S, FBM230 / P0926GU, FEM100 / P0973CA и т.д.
Invis Triconex: Модуль питания, модуль CPU, модуль связи, модуль ввода – вывода, например 300830937214351B, 3805E, 831235114355X и т.д.
Вудворд: контроллер местоположения SPC, цифровой контроллер PEAK150, например 8521 – 0312 UG – 10D, 9907 – 149, 9907 – 162, 9907 – 164, 9907 – 167, TG – 13 (8516 – 038), 8440 – 1713 / D, 9907 – 018 2301A, 5466 – 258, 8200 – 226 и т.д.
Hima: модули безопасности, такие как F8650E, F8652X, F8627X, F8678X, F3236, F6217, F6214, Z7138, F8651X, F8650X и т.д.
Honeywell: Все платы DCS, модули, процессоры, такие как: CC – MCAR01, CC – PAIH01, CC – PAIH02, CC – PAIH51, CC – PAIX02, CC – PAON01, CC – PCF901, TC – CR014, TC – PD011, CC – PCNT02 и т.д.
Motorola: серии MVME162, MVME167, MVME172, MVME177, такие как MVME5100, MVME5500 – 0163, VME172PA – 652SE, VME162PA – 344SE – 2G и другие.
Xycom: I / O, платы VME и процессоры, такие как XVME – 530, XVME – 674, XVME – 957, XVME – 976 и т.д.
Коул Морган: Сервоприводы и двигатели, такие как S72402 – NANA, S6201 – 550, S20330 – SRS, CB06551 / PRD – B040SSIB – 63 и т. Д.
Bosch / Luxer / Indramat: модуль ввода / вывода, контроллер PLC, приводной модуль, MSK060C – 0600 – NN – S1 – UP1 – NNN, VT2000 – 52 / R900033828, MHD041B – 144 – PG1 – UN и т.д.
Although it was established only a few months ago, ABB Future Lab has already cooperated with Huawei to
complete the AI training of garbage sorting robots in two months. This robot uses AI technology based on Huawei
chips and uses industrial cameras to sort objects.
Obviously, adjusting the business model and organizational structure is an important reason why ABB has
lways been at the forefront of the industry.
From technology iteration to application implementation, ABB aims to provide complete solutions
As a pioneer in manufacturing automation and digitalization, ABB”s products in the automation field are constantly
improving, and its application industries are also expanding.
In Alf”s view, the structure and construction of automation have not changed much in the past 30 years. From signal
collection and information transmission to work scenarios or operational interfaces, the flow of information in automated systems has basically not changed.
But the arrival of 5G may change the way information is transmitted between devices. 5G’s characteristics such as large
capacity, high reliability and low latency make it possible to realize independent connections between devices. If real-time
mainline connection can be achieved and installed on the cloud or platform, it will be a more disruptive application.
5G will not only change the way ABB operates, but is also likely to introduce digitalization into the industry, including digital
operation and maintenance. ABB has launched an industrial Internet solution called ABB Ability, which firstly provides a platform
, and secondly, it includes all ABB”s digital cloud products, such as equipment industrial solutions and transportation solutions.
In addition to digitization, another focus of Alf is the autonomy of machines. He took the autonomous management of
autonomous driving and warehousing as examples to think about the development process of machine autonomy –
from human operation to machine operation, and ultimately to autonomous implementation and testing without the need for humans at all.
For ABB, in addition to popular autonomous driving technology, industrial production scenarios also have strong
demand for the autonomy of machinery and equipment, such as autonomous docking of ships and the mining industry
. In some industrial scenarios represented by mining, toxic gases and substances in the working environment are
harmful to the human body, so equipment
is required to have the ability to enter and leave the mine independently. ABB first needs to study the value proposition
of these businesses, discover potential applications, and then discover in which fields it can be applied.
A technology close to autonomy is artificial intelligence. Since its birth in the 1960s, it has been attracting people”s
attention, and there have been endless discussions about “robot replacement”. After decades of development,
related technologies have gradually matured, and more and more AI technologies have begun to be discussed
in the application field. The products and technologies
of leading manufacturers such as ABB have attracted much attention.
ABB has been applying AI technology to its products for 20 years, but its current mature products are mainly
diagnostic applications based on traditional statistics. Alf introduced to Yiou New Manufacturing that
as part of the diagnostic solution, this technology is mainly used to implement condition monitoring functions
. More mature applications are reflected in the automated management of equipment, such as the electronic
management of ships.
Machine learning is another promising AI technology. At the World Artificial Intelligence Conference at the
end of August this year, ABB demonstrated a coffee workbench composed of a two-arm collaborative robot Yu Mi.
Through guided programming of YuMi, the collaborative robot can learn and
remember the barista”s movements to complete the complete process of making coffee, latte art and delivering it to the audience.
In actual implementation scenarios, this technology is used to transform terminals carrying containers. By simulating the
location and status of box handling, the collected data is used to train the AI, allowing the AI to know the
location of the container, thereby achieving automation.
From automation, digitalization, autonomy and artificial intelligence technologies, ABB is not a blind pursuer of
emerging technology concepts. It pays more attention to customer needs and actual implementation, and achieves
better solutions through different product combinations.
There are two major difficulties in balancing R&D and business and implementing solutions.
As a commercial company, ABB still needs to consider the balance between R&D investment and revenue.
In Alf”s view, they do not have unlimited R&D resources, so they need to focus on finding a balance between
improving original product functions and developing new functions. In terms of technology research and development,
we also need to try to focus on projects that can bring the greatest value to the company.
Regarding the specific implementation of digital solutions, Alf believes that there are currently two main difficulties.
The first difficulty is that ABB cannot just develop a general solution, because different industry segments
have different needs, so it must design solutions that suit their different needs. ABB not only needs to master
knowledge in different fields and different applications, but also needs to consider the availability of data.
The second difficulty lies in the use of data, because AI requires a large amount of data training. On
the one hand, ABB needs to encourage customers to provide data for training models; on the other hand,
ABB also needs to ensure customers the privacy, ownership and security of their data.
“Industrial artificial intelligence needs to be combined with models and data. But the most
important thing is that we must provide value to customers through the use of AI, otherwise we will just
apply technology for the sake of applying technology.” Alf concluded.
HONEYWELL FC-SDOL-0424 Digital output module
871TM-BH8N18-N3 Inductive Sensor
GJR5252300R3101 07AC91F Analog I/O Unit
BENTLY 330101-23-39-10-12-CN sensor
PR6424/010-010+CON021 Shaft vibration sensor probe
Woodward 9907-018 2301A Forward Acting Speed Control
SYN5202-0271 ABB Synchronous device
ACU-01B 3HNA024871-001 Paint Robots
Agilent E1422A Remote Channel Multi-function DAC Module
Agilent E1460A 64-Channel Relay Multiplexer
Agilent E1451A Terminating 20 MHz Pattern I/O Module
Agilent E1441A Arbitrary Waveform Generator
Agilent E1490C VXI Breadboard Module
Agilent E1490B VXI Breadboard Module
Agilent E8305A 250 MHz Pulse Pattern Generator
Agilent E1438D 100 MSa/s Digitizer with DSP and Memory
Agilent E1420B High-Performance Universal Counter
Agilent E1406A VXI GPIB Command Module
Agilent E6234A VXI Pentium PC Controller
Agilent E1426A Digitizing Oscilloscope 500 MHz
Agilent 0950-2283 E1401B High-Power VXI Mainframe Power Supply
Applied Materials 0090-09061-A Thermal Electric Driver Module
Applied Materials 0110-09023-D Mini DI/DO Module
Applied Materials 0110-09022-B Mini AI/AO Module
Applied Materials 0100-09006-M1 Intelligence Interface Module
Applied Materials 0100-11002 Digital I/O VME Module
Applied Materials AMAT 0100-20173 Stepper Controller VME Module
Applied Materials 1043-0024-003 Digital Interface VME Module
Applied Materials 0100-01321 Digital I/O VME Module
Applied Materials 0100-20001 System Electronics Interface VME Module
Bently Nevada 200200-11-11-05 proTIM-R Module
Bently Nevada 1701/10 FieldMonitor 24-Volt dc Power Supply
Bently Nevada PWA88199-01 Rear Control Panel
Bently Nevada 78432-02 Power Input Module
Bently Nevada 78462-01 3300 Relay Module -Conformal Coated
Bently Nevada 3300/80-01-01-01 Six channel stick drop monitor
Bently Nevada 81192-03 Thermocouple Input Module
ASFC-01C 64649540 Switch fuse controller
Bently Nevada 81546-01 Dual Hermetic Relays Module
Bently Nevada 84142-01 XDUCR I/O and Record Terminals Module
Bently Nevada 86416-01 Multi-Channel Diagnositc Instrument
Bently Nevada 82925-01 XDCR I/O and Record Terminals Module
SYN 5202a-Z V221 3BHB006715R0221 SYNCHROTACT®5 is a fifth generation synchrotact device
Bently Nevada 84157-01 LVDT (POT) and Record Terminals Module
Bently Nevada 88501-01 3300 External KO Inputs and Buffered Outputs Module
Bently Nevada 76683-02 35mm 3300 Series Proximitor
Bently Nevada PWA88219-01U 3300 Power Supply
Bently Nevada 78462-02N 3300 Relay Module
Bently Nevada 78462-01 3300 Relay Module
Bently Nevada 3300/03-01-01 System Monitor
Bently Nevada 3300/03-03-03 System Monitor
Bently Nevada 3300/50-01-02-01-00 Tachometer
Bently Nevada 3300/20-02-01-00-00-00 Dual Thrust Position Monitor
Bently Nevada 3300/16-11-01-02-00-00-01 XY/Gap Dual Vibration Monitor
Bently Nevada 3300/55-01-04-02-02-01-00-06-00 Dual Velocity Monitor
Bently Nevada 3300/50-02-02-00-00 Tachometer
Bently Nevada 3300/12 Power Supply -Conformal Coated
Bently Nevada 3300/16-02-01-00-03-00-00 XY/Gap Dual Vibration Monitor
Bently Nevada 3300/35-13-02-02-03-00 Six-Channel Temperature Monitor
Bently Nevada 3300/20-03-01-00-01-00 Dual Thrust Position Monitor
Bently Nevada 3300/20-12-01-02-00-00 Dual Thrust Position Monitor
мы организуем фото на складе, чтобы подтвердить
чтобы вернуть их вам. Конечно, мы ответим на ваши озабоченности как можно скорее.
Reviews
There are no reviews yet.