Description
hardware flow control. It is an ideal choice in the field of industrial automation.
In June 2018, Yaskawa (China) Robot Co., Ltd. held a completion ceremony for its third factory in Changzhou. In October, Japan”s FANUC Robotics Chongqing base
project started construction and is expected to be completed in the first half of 2019. After reaching capacity, it will achieve an annual output value of more than 200
million yuan. Local areas compete for new opportunities in high-end manufacturing
From government procurement and local industrial policies, we can see that all regions are competing for new opportunities in digital and intelligent transformation,
and high-end manufacturing, represented by robots, has become the focus of local efforts.
At the CIIE, robot companies received intensive orders. Analysts from the 21st Century Economic Research Institute found that high-end manufacturing, smart
and high-end equipment, new energy vehicles, etc. have become the focus of procurement in the procurement lists of multiple provincial trading groups.
Official data shows that of the US$57.83 billion in intended turnover at the CIIE, the smart and high-end equipment exhibition area had the highest turnover, reaching
US$16.46 billion. Some exhibitors at the exhibition said that they had never received so many large customers from state-owned enterprises and local governments in
one day, and the total order volume far exceeded expectations.
The representative city that focuses on high-end manufacturing is Shanghai, where the service industry accounts for more than 70%. In the “Thirteenth Five-Year
Plan for the Transformation and Upgrading of Shanghai”s Manufacturing Industry” released at the end of 2016, high-end manufacturing is regarded as an important
breakthrough for industrial transformation.
In the past two years, Shanghai”s investment promotion in the field of high-end manufacturing has also been fruitful. A number of major projects such as robots,
new energy vehicles, large aircraft, and integrated circuits have been launched one after another. Take robots as an example. As a carrier of intelligent manufacturing,
Shanghai has gathered domestic and foreign leading robot companies including ABB, KUKA, SIASUN and Xinstar. Currently, robot output accounts for more than 20% of the country”s total.
In the first half of 2018, Shanghai”s non-state-owned economic and industrial investment increased by 32.9% year-on-year, with major projects distributed in various
industries such as auto parts, clothing, and robots. High-end manufacturing projects introduced in Shanghai this year include the Tesla Gigafactory, which plans to
produce 500,000 pure electric vehicles per year , and the
ABB Robotics Gigafactory, which plans to produce 100,000 robots per year. The latter will realize “making robots with robots”. After being put into production in 2020,
the total output of high-end industrial robots made in Shanghai will double.
As a manufacturing hub in the central and western regions, Chongqing is also making continuous efforts in high-end manufacturing. In 2018, Chongqing held the first
China Smart Expo, focusing on smart manufacturing and hoping to build a project exchange and docking
platform in the field of smart manufacturing. In November, Chongqing released “Nine Policy Measures to Reduce the Cost of Manufacturing Enterprises”, which will
reduce the cost of manufacturing enterprises by more than 30 billion yuan each year. Chongqing also supports key enterprises to increase their efforts in intelligent
transformation of equipment, with a maximum subsidy of 5 million yuan for a single project.
In terms of project investment, three of the four major robot families have settled in Chongqing to invest, including ABB from Switzerland, KUKA from Germany, and
FANUC from Japan. At present, there are more than 300 robot companies in Chongqing, and the number of industrial robot companies has exceeded 120.
A mature robot market should have 70 robots per 10,000 jobs. Countries with relatively developed robot applications, such as South Korea, Germany, Japan, etc.,
already have 300 robots per 10,000 people, while China is far lower than the previous one. numbers, let alone compared to developed countries. In 2016, China”s
“Robot Industry Development Plan (2016-2020)” proposed that the density of industrial robots (the number of industrial robots used per 10,000 workers) should reach more than 150 by 2020.
How to support high-end industries locally
Analysts from the 21st Century Economic Research Institute combed through the high-end manufacturing support policies in Shanghai, Chongqing,
Shandong and other places and found that most of them focus on industrial land, fiscal and tax support, etc.
Shanghai has proposed seven safeguard measures: reforming the industrial system and mechanism, coordinating industrial land use,
increasing fiscal and taxation support, promoting the integration of industry and finance, building a talent system, implementing an open development
strategy, and improving the planning and implementation system. Jiangsu implements a high-end equipment research and development catch-up project,
focusing on the development of 13 fields such as electronic industry equipment and intelligent complete sets of equipment.
Zhejiang implements special projects for equipment with major shortcomings, focusing on ten major fields such as rail transit, robots and
intelligent manufacturing equipment.
Excitation system ABB module 07ZE62R101
Excitation system ABB module 07ZE61R101
Excitation system ABB module 07ZE60R201
Excitation system ABB module 07ZB69R2
Excitation system ABB module 07ZB69R1
Excitation system ABB module 07ZB60
Excitation system ABB module 07YS86
Excitation system ABB module 07YS81
Excitation system ABB module 07YS80
Excitation system ABB module 07TI80
Excitation system ABB module 07PT40
Excitation system ABB module 07PS63R2
Excitation system ABB module 07PS62R3
Excitation system ABB module 07PS62R1
Excitation system ABB module 07PG201
Excitation system ABB module 07PG200R1
Excitation system ABB module 07NG82
Excitation system ABB module 07NG68R1
Excitation system ABB module 07NG66R1
Excitation system ABB module 07NG63R2
Excitation system ABB module 07NG60R1
Excitation system ABB module 07MK62
Excitation system ABB module 07KT98C GJR5253100R028
Excitation system ABB module 07KT98-ARCNET
Excitation system ABB module 07KT98 H4 GJR5253100R3262
Excitation system ABB module 07KT98 H4 GJR5253100R3262
Excitation system ABB module 07KT98 H4 GJR5253100R3260
Excitation system ABB module 07KT98 GJR5253100R4278
Excitation system ABB module 07KT98 GJR5253100R0278
Excitation system ABB module 07KT98 GJR5253100R0278
Excitation system ABB module 07KT98
Excitation system ABB module 07KT98
Excitation system ABB module 07KT97H3
Excitation system ABB module 07KT97F1
Excitation system ABB module 07KT97B
Excitation system ABB module 07KT97 GJR5253000R4270
Excitation system ABB module 07KT97 GJR5253000R0100
Excitation system ABB module 07KT94 GJR5252100R3261
Excitation system ABB module 07KT94
Excitation system ABB module 07KT93 G/GJR5251300R0101
Excitation system ABB module 07KT92 GJR5250500R0902
Excitation system ABB module 07KT92 CS31
Excitation system ABB module 07KT92
Excitation system ABB module 07KT60
Excitation system ABB module 07KT31
Excitation system ABB module 07KT228
Excitation system ABB module 07KR51 DC24V
Excitation system ABB module 07KR31 FPR36000227R1202-S
Excitation system ABB module 07KR31
Excitation system ABB module 07KR31
Excitation system ABB module 07KR240
Excitation system ABB module 07KR228
Excitation system ABB module 07KR220b
Excitation system ABB module 07KP62
Excitation system ABB module 07ET83A
Excitation system ABB module 07ET40R1
Excitation system ABB module 07EI60
Excitation system ABB module 07EB90-S
Reviews
There are no reviews yet.