Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Implementation of communication between ABC industrial robot and PLC based on DeviceNet fieldbus technology
introduction
In modern production systems, industrial robots and PLCs need to communicate and collaborate to complete production tasks. That is, the
industrial robots output signals to the PLC, allowing the PLC to control related equipment to drive the robot”s front-end tools. This article
mainly analyzes the communication problems between ABB industrial robots and PLC based on DeviceNet fieldbus technology.
DeviceNet is a common network communication method in the field of automation. ABB industrial robots establish a network to communicate with
Siemens PLC based on the DeviceNet network.
1Configure DSQC652
There are mainly 5 types of standard I/0 boards commonly used in ABB industrial robots [2]. Except for the different addresses assigned to
them during setup, their configuration methods are basically the same. This article mainly analyzes the ABB standard I/0 board DS0C652, which
mainly builds communication modules based on the DeviceNet network. The DS0C652 board has a distributed I/O module with 16 digital input and 16
digital output interfaces. The board is installed in the ABB industrial robot control cabinet. First, define the specific operation steps of the DS0C652 board,
enter the teach pendant control panel, then enter the configuration menu (Figure 1), select the DeviceNetDevice menu, and add a template to enter Figure 2.
ABB standard I/0 board is hung on the DeviceNet
network, so the address of the module in the network must be set. The jumpers 6 to 12 of terminal x5 are used to determine the address of the module.
The available address range is 10 to 63. Modify the parameters in the template parameters to complete the DS0C652 board settings. Click the drop-down
menu to select the “Use value from template” row, select
“DS0C65224VDCI/0Device”, and then the parameters that need to be set include the address of the I/0 board in the bus.
Figure 1 Configuring DSQC652
2Configure signals and parameters
After completing the DS0C652 board setting, the I/0 signal setting will be performed. Setting the I/0 signal is the basis for establishing communication with
the PLC. The PLC communicates and transmits data with the ABB industrial robot through the I/0 signal and the DS0C652 board. As shown in Figure 3, in the
signal configuration interface, there are many default I/0 points after the system is established. Modification is not allowed. Click “Add” to add signals. When setting
input and output signals, their address range is 0~15. First, enter the signal menu in the configuration options to set the input and output types, and modify the corresponding parameters.
After completing the settings, the computer prompts that you need to restart the settings. If there are multiple signals that need to be defined and the waiting time
is long after restarting multiple times, you can click “Cancel” and wait for all signals to be defined before clicking the “Yes” button to restart. After the signal settings are
completed, click to select “Input and Output” in the ABB menu to check whether all signals have been set.
Figure 2 Configure DSQC652 parameters
Figure 3 Signal parameter settings
During the signal establishment process, attention should be paid to the DSoC652 port and PLC port addresses used, and the corresponding address table should be
established, as shown in Table 1. The robot interacts with the PLC through I/O signals. During the setting process, there must be no errors in the port and address number
of the PLC connected to the DSoC652. If the address is set incorrectly, the communication between the robot and the PLC will not work properly.
The entire robot teaching pendant setting process is shown in Figure 4.
COM0002 Industrial module ABB
2RAA005844A0005H Industrial module ABB
3DDE300416 Industrial module ABB
CMA136 Industrial module ABB
CMA136 3DDE300416 ABB
CMA132 3DDE300412 ABB
3DDE300412 Industrial module ABB
CMA132 Industrial module ABB
3DDE300411 Industrial module ABB
CMA131 Industrial module ABB
CMA131 3DDE300411 ABB
CMA120 3DDE300400 ABB
3DDE300400 control unit ABB
CMA120 control unit ABB
3BDH000368R0001 control unit ABB
CM772F control unit ABB
CM772F 3BDH000368R0001 ABB
CI868K01-eA 3BSE048845R2 ABB
3BSE048845R2 control unit ABB
CI868K01-eA control unit ABB
3BSE056767R control unit ABB
CI871K01 control unit ABB
CI871K01 3BSE056767R ABB
CI860K01 3BSE032444R1 ABB
3BSE032444R1 control unit ABB
CI860K01 control unit ABB
3BSE018135R1 control unit ABB
CI858K01 control unit ABB
CI858K01 3BSE018135R1 ABB
CI858-1 3BSE018137R1 ABB
3BSE018137R1 Industrial module ABB
CI858-1 Industrial module ABB
CI855 Industrial module ABB
3BSE018134R1 Industrial module ABB
CI855-1 Industrial module ABB
CI855-1 3BSE018134R1 ABB
CI854K01 3BSE025961R1 ABB
3BSE025961R1 control unit ABB
CI854K01 control unit ABB
3BSE030221R1 control unit ABB
CI854A control unit ABB
CI854A 3BSE030221R1 ABB
CI854A-EA 3BSE030221R2 ABB
3BSE030221R2 control unit ABB
CI854A-EA control unit ABB
3BSE025347R1 control unit ABB
CI854 control unit ABB
CI854 3BSE025347R1 ABB
CI853-1 3BSE018125R1 ABB
3BSE018125R1 Industrial module ABB
Reviews
There are no reviews yet.