Description
CI854BK01 3BSE069449R1 Модуль ввода / вывода ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.CI854BK01 3BSE069449R1
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;CI854BK01 3BSE069449R1Строительная промышленность: коммерческое и промышленное строительство.
(5) Perform predictive maintenance, analyze machine operating conditions, determine the main
causes of failures, and predict component failures to avoid unplanned downtime.
Traditional quality improvement programs include Six Sigma, Deming Cycle, Total Quality Management (TQM), and Dorian Scheinin’s
Statistical Engineering (SE) [6]. Methods developed in the 1980s and 1990s are typically applied to small amounts
of data and find univariate relationships between participating factors. The use of the MapReduce paradigm to simplify data processing in
large data sets and its further development have led to the mainstream proliferation of big data analytics [7]. Along with the development of
machine learning technology, the development of big data analytics has provided a series of new tools that can be applied to manufacturing
analysis. These capabilities include the ability to analyze gigabytes of data in batch and streaming modes, the ability to find complex multivariate
nonlinear relationships among many variables, and machine learning algorithms that separate causation from correlation.
Millions of parts are produced on production lines, and data on thousands of process and quality measurements are collected for them, which is
important for improving quality and reducing costs. Design of experiments (DoE), which repeatedly explores thousands of causes through
controlled experiments, is often too time-consuming and costly. Manufacturing experts rely on their domain knowledge to detect key
factors that may affect quality and then run
DoEs based on these factors. Advances in big data analytics and machine learning enable the detection of critical factors that effectively
impact quality and yield. This, combined with domain knowledge, enables rapid detection of root causes of failures. However,
there are some unique data science challenges in manufacturing.
(1) Unequal costs of false alarms and false negatives. When calculating accuracy, it must be recognized that false alarms
and false negatives may have unequal costs. Suppose a false negative is a bad part/instance that was wrongly predicted to
be good. Additionally, assume that a false alarm is a good part that was incorrectly predicted as bad. Assuming further that
the parts produced are safety critical, incorrectly predicting that bad parts are good (false negatives) can put human lives
at risk. Therefore, false negatives can be much more costly than false alarms. This trade-off needs to be considered when
translating business goals into technical goals and candidate evaluation methods.
Excitation system ABB module GJR2332200R0100
Excitation system ABB module GJR2329800R0100
Excitation system ABB module GJR2329100R0100
Excitation system ABB module GJR2312200R1010
Excitation system ABB module GFD563A102 3BHE046836R0102
Excitation system ABB module GFD563A102 3BHE046836R0102
Excitation system ABB module GFD563A101 3BHE046836R0101
Excitation system ABB module GFD563A101 3BHE046836R0101
Excitation system ABB module GFD563A101
Excitation system ABB module GFD233A103 3BHE022294R0103
Excitation system ABB module GFD233A101
Excitation system ABB module GFD233A101
Excitation system ABB module GFD233A 3BHE022294R0103
Excitation system ABB module GFD233 3BHE022294R0103
Excitation system ABB module GFD233
Excitation system ABB module GFD212A
Excitation system ABB module GFD212A
Excitation system ABB module GDC806C6003 3BHE044249R6003
Excitation system ABB module GDB021BE05 HIEE300766R0005
Excitation system ABB module GDB021BE05
Excitation system ABB module GDB021BE01 HIEE300766R0001
Excitation system ABB module GDB021BE
Excitation system ABB module GDB021 HIEE410455P104
Excitation system ABB module GD9924BE/V2 HIEE401091R0002
Excitation system ABB module GD9924BE
Excitation system ABB module GCC960C103
Excitation system ABB module G3FK HENF452878R1
Excitation system ABB module G3FE HENF452697R1
Excitation system ABB module G3FD HENF452692R1
Excitation system ABB module G3FCb HENF458568R1
Excitation system ABB module G3ESa HENF318736R1
Excitation system ABB module G3ENa HENF450268R2
Excitation system ABB module G3EFa HENF450295R2
Excitation system ABB module G3EB HENF315768R1
Excitation system ABB module G3EA HENF315754R1
Excitation system ABB module G2010A10.4ST
Excitation system ABB module FW9925a-E
Excitation system ABB module FS801K01
Excitation system ABB module FS801K01
Excitation system ABB module FS300R17KE3
Excitation system ABB module FPR3346501R1012
Excitation system ABB module FM9925A-E
Excitation system ABB module FI840F-Z
Excitation system ABB module FI840F 3BDH000033R1
Excitation system ABB module FI840F 3BDH000033R1
Excitation system ABB module FI840F
Excitation system ABB module FI840F
Excitation system ABB module FI840F
Excitation system ABB module FI830F-Z
Excitation system ABB module FI830F/3BDH000032R1
Excitation system ABB module FI830F
Excitation system ABB module FI830F
Excitation system ABB module FI830F
Excitation system ABB module FI820F-Z
Excitation system ABB module FI820F
Excitation system ABB module FI820F
Excitation system ABB module FI820F
Excitation system ABB module FI820F
Excitation system ABB module FI810F-Z
Excitation system ABB module FI810F
Excitation system ABB module FI810F
Excitation system ABB module FI803F
Excitation system ABB module FH660S-2220
Excitation system ABB module FH660S-2200
Excitation system ABB module FH660S-2020
Excitation system ABB module FH660S-2000
Excitation system ABB module FH660S-1110
Excitation system ABB module FH660S-1100
Excitation system ABB module FH660S-0200
Excitation system ABB module FH660S-0100
Excitation system ABB module FH660S-0000
Excitation system ABB module FEC12
Excitation system ABB module ETP90H-4G50
Excitation system ABB module EL3020-Uras26+02sensor
Excitation system ABB module EL3020
Excitation system ABB module EL3020
Excitation system ABB module EL3000
Excitation system ABB module EI813F-Z
Excitation system ABB module EI813F 3BDH000022R1
Reviews
There are no reviews yet.