Description
hardware flow control. It is an ideal choice in the field of industrial automation.
In a DC brush motor, the stator is a permanent magnet and the rotor is a wound coil; the magnetism has two poles, which repel each other and attract each other.
Therefore, passing direct current through the rotor coil will allow the rotor to rotate until it reaches the position where the torque is the smallest with the stator. At this
time, due to the commutation of the brushes, the position where the torque was originally the smallest becomes the position where the torque is the largest. Finally,
over and over again, the rotor continues to rotate. .
Brushless DC does not have brushes; at the same time, in brushless DC motors, the stator is a permanent magnet and the rotor is a winding structure.
In brushless DC motors, the stator is a winding and the rotor is a permanent magnet. If the winding is still on the rotor, you have to rely on physical contact to energize
the winding, which does not solve the problem of brush aging. In the brushless DC motor, the winding exists in the stator and has three phase wires; when working, the
input and output currents are successively supplied to the three phase wires to achieve the purpose of commutation. In brushless DC, the electromagnetic force generated by the
rotor and stator is the same as that of brushed DC.
For brushless DC motors, it is not necessarily whether the stator is inside or outside. A motor with a rotor outside and a stator inside is generally
called an external rotor motor. The hub motor is a very special external rotor motor.
Brushless DC motor, why is it classified as AC motor?
This is because when we supply power to the controller of brushless DC and permanent magnet synchronous motors, we supply DC
power, so it is called brushless DC; however, after the DC power is inverted through the motor controller, it communicates with the motor. For the three connected phase lines,
the power supply type changes to AC. Only the changing phase voltage of AC can cause the current on the three phase lines of the motor to continuously reverse direction,
so the motor is classified as an AC motor.
3. Similarities and differences between brushless DC and permanent magnet synchronization
Brushless Direct Current Motor, English BLDC, English full name Brushless Direct Current Motor
Permanent Magnet Synchronous Motor, English PMSM, English full name: Permanent Magnet Synchronous Motor
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
METSO IOP304
METSO IOP320
METSO IOP331
METSO IOP341
METSO IOP345
METSO IOP353 181220
METSO IOP353
METSO IOT300A
METSO PDP401
METSO PDP403
METSO PDP601
METSO R/I-TB 9139041
METSO S420061
METSO S420071
METSO S420154
METSO S422737
GE IC75VGI06MTD-LH
GE IC75VSI12CTD-DD
GE IC754CSL12CTDEC
GE IC754CSL12CTD
GE IC754CSX06CTD
GE IC752SPL013
GE VMICPCI-7806-223000 Intel Pentium M/Celeron M Universal CompactPCI Single Board Computer
GE Microprocessor VMICPCI-7806-21100/350-657806-21100 D
GE VMICPCI-7806-211000 Remote Ethernet Boot CPU Module
GE microprocessor board VMICPCI-7806-211000 350-657806-211000L
ABB UMB015BE02 HIEE400995R0002
ABB UMB015BE HIEE40110R0002
ABB UMB015BE02 HIEE40110R0002
ABB UMB015BE HIEE400995R0002
HIEE40110R0002-MODIFICATION-UM B015 BE
HIEE400995R0002-3004223/010-UMB015BE02
HIEE400995R0002-3004223/010-UM B015 BE02+HIEE40110R0002-MODIFICATION-UM B015 BE
ABB UAA326A04
ABB HIEE300024R4
ABB HIEE300024R4 UAA326A04
ABB HIEE300024R2
ABB UAA326A02
ABB UAA326A02 HIEE300024R2
ABB HIEE300744R1
ABB UAC318AE
ABB UAC318AE HIEE300744R1
ABB HIEE401481R0001
ABB UAC326AE
ABB UAC326AE HIEE401481R0001
ABB HIEE300890R0001
ABB UAC383AE01
ABB UAC383AE01 HIEE300890R0001
ABB HIEE300888R0001
ABB UAC389AE01
ABB UAC389AE01 HIEE300888R0001
ABB 3BHE012551R0001
ABB UAD142A01
Reviews
There are no reviews yet.