Description
AO02 Использование параметров ABB
CC – Link и другие. Каждый слот IO может быть выбран автономно в соответствии с потребностями клиента, а один модуль поддерживает до 16 каналов.
Технологии основаны на инновацияхAO02 Предоставление клиентам высококачественных и надежных продуктов всегда было постоянным стремлением к нулю.
Давайте посмотрим на его инновации и различия с предшественниками: с жидкокристаллическим дисплеем, вы можете увидеть параметры связи, состояние канала IO,
информацию о версии модуля и так далее; AO02 Отладка и обслуживание более интуитивно понятны; ABS огнестойкая пластиковая оболочка, небольшой размер,
легкий вес, с использованием совершенно новой пряжки монтажной карты, установка более прочная и надежная.
3 Case Studies on Reducing Scrap Rates
Any product assembled or produced in a factory goes through a series of quality tests to determine whether it needs to be scrapped.
High scrap rates are caused by the opportunity cost of not delivering products to customers in a timely manner, wasted personnel time, wasted
non-reusable parts, and equipment overhead expenses. Reducing scrap rates is one of the main issues manufacturers need to address. Ways to
reduce scrap include identifying the root causes of low product quality.
3.1 Data processing
Root cause analysis begins by integrating all available data on the production line. Assembly lines, workstations, and machines make up the industrial
production unit and can be considered equivalent to IoT sensor networks. During the manufacturing process, information about process status,
machine status, tools and components is constantly transferred and stored. The volume, scale, and frequency of factory production considered in
this case study necessitated the use of a big data tool stack similar to the one shown in Figure 2 for streaming, storing, preprocessing, and
connecting data. This data pipeline helps build machine learning models on batch historical data and streaming real-time data. While batch
data analytics helps identify issues in the manufacturing process, streaming data analytics gives factory engineers regular access to the latest
issues and their root causes. Use Kafka (https://kafka.apache.org) and Spark streaming (http://spark.apache.org/streaming) to transmit real-time
data from different data sources; use Hadoo (http://hadoop.apache.org ) and HBase (https://hbase.apache.org) to store data efficiently; use
Spark (http://spark.apache.org) and MapReduce framework to analyze data. The two main reasons to use these tools are their availability as open
source products, and their large and active developer network through which these tools are constantly updated.
YOKOGAWA AIP601
YOKOGAWA EP1A
YOKOGAWA VM2D
YOKOGAWA EX1A
YOKOGAWA ADV559-P00
ABB CPU 3BHE041343R0102
ABB CPU PCD530A102
ABB PCD530A102 3BHE041343R0102
YOKOGAWA AIP503
YOKOGAWA AIP121
YOKOGAWA ESCA
YOKOGAWA ADV159-P00
YOKOGAWA APM11
YOKOGAWA ADM52-2
YOKOGAWA ADM51
YOKOGAWA LCSC
YOKOGAWA AS-S949IBJ-0
YOKOGAWA AIP562 S1
YOKOGAWA AIP413
YOKOGAWA ET5B
YOKOGAWA NP54C
YOKOGAWA ADV561-P00 S2
YOKOGAWA ADV169-P00 S1
YOKOGAWA AAI141-H00
YOKOGAWA ADM52C
YOKOGAWA MX2D
YOKOGAWA ST3D
YOKOGAWA ST4D
YOKOGAWA ATD5A-00-S1
YOKOGAWA VC401-10
YOKOGAWA NC4B
YOKOGAWA EC0A
YOKOGAWA ADM52
YOKOGAWA SL1400 701240-R-J0-HE
YOKOGAWA RS2C
YOKOGAWA RS2C
YOKOGAWA AAI141-S00 S2
YOKOGAWA VM1B
YOKOGAWA CNB-22A
YOKOGAWA AAP149-S00 S1
YOKOGAWA NP2A
YOKOGAWA NP53C
YOKOGAWA EB402-10 S1
YOKOGAWA F3BU040N
YOKOGAWA CP345
YOKOGAWA EB501-10 S2
YOKOGAWA CP451-10 S2
YOKOGAWA EA2A
YOKOGAWA EN71A
YOKOGAWA AIP181
YOKOGAWA IP91A
YOKOGAWA PW482-10 S2
KEBA FB201
YOKOGAWA AAM50
YOKOGAWA CP21A
YOKOGAWA AIP502
YOKOGAWA PS62A
YOKOGAWA AAM11B
YOKOGAWA ANR11D-420S1
YOKOGAWA AAR181-S50S2
YOKOGAWA VF311
YOKOGAWA DX11A
YOKOGAWA ADM11C
YOKOGAWA EH1A
YOKOGAWA PW302S4
YOKOGAWA ADM11
YOKOGAWA AIP512
YOKOGAWA AIP532
YOKOGAWA AVR10D-Q22020-S2
YOKOGAWA FC82B
YOKOGAWA PW404
YOKOGAWA SI11B
YOKOGAWA SDBS-140A
Reviews
There are no reviews yet.