Description
hardware flow control. It is an ideal choice in the field of industrial automation.
3.2 Machine learning
As the functionality of distributed computing tools such as Spark MLLib (http://spark.apache.org/mllib) and SparkR (http://spark.apache
.org/docs/latest/index.html) increases, it becomes It is easier to implement distributed and online machine learning models, such as support
vector machines, gradient boosting trees and decision trees for large amounts of data. Test the impact of different machine parameters and process
measurements on overall product quality, from correlation analysis to analysis of variance and chi-square hypothesis testing to help determine the impact of individual
measurements on product quality. This design trains some classification and regression
models that can distinguish parts that pass quality control from parts that do not. The trained models can be used to infer decision rules. According to the highest purity rule,
purity is defined as Nb/N, where N is the number of products that satisfy the rule and Nb is the total number of defective or bad parts that satisfy the rule.
Although these models can identify linear and nonlinear relationships between variables, they do not represent causal relationships. Causality is critical to
determining the true root cause, using Bayesian causal models to infer causality across all data.
3.3 Visualization
A visualization platform for collecting big data is crucial. The main challenge faced by engineers is not having a clear and comprehensive overview of the complete manufacturing
process. Such an overview will help them make decisions and assess their status before any adverse events occur. Descriptive analytics uses tools such as
Tableau (www.tableau.com) and Microsoft BI (https://powerbi.microsoft.com/en-us) to help achieve this. Descriptive analysis includes many views such as
histograms, bivariate plots, and correlation plots. In addition to visual statistical descriptions,
a clear visual interface should be provided for all predictive models. All measurements affecting specific quality parameters can be visualized and the data
on the backend can be filtered by time.
Excitation system ABB module NDIO-02
Excitation system ABB module NDCU-33CX 3AUA0000052751
Excitation system ABB module NDCU-12C NDCU-12CK
Excitation system ABB module NDCS03
Excitation system ABB module NDBU-95C
Excitation system ABB module NDBU-95C
Excitation system ABB module NCTM01
Excitation system ABB module NCPM01
Excitation system ABB module NCOM04
Excitation system ABB module NCOM03
Excitation system ABB module NCOM02
Excitation system ABB module NCOM01
Excitation system ABB module NCNA-01
Excitation system ABB module NCIS02
Excitation system ABB module NCIS01
Excitation system ABB module NBTM01
Excitation system ABB module NBRA-658C
Excitation system ABB module NBIO-21CU
Excitation system ABB module NBIO-21C
Excitation system ABB module NBIM02
Excitation system ABB module NBIM01
Excitation system ABB module NASO01
Excitation system ABB module NASM04
Excitation system ABB module NASM03
Excitation system ABB module NASM02S
Excitation system ABB module NASM02E
Excitation system ABB module NASM02
Excitation system ABB module NASM01
Excitation system ABB module NASI02/F
Excitation system ABB module NASI02
Excitation system ABB module NAOM01
Excitation system ABB module NAMU-01C 64702475D
Excitation system ABB module NAMM03
Excitation system ABB module NAMM02
Excitation system ABB module NAMM01
Excitation system ABB module NAIO-03
Excitation system ABB module NAIO-03
Excitation system ABB module NADS01
Excitation system ABB module MX-CS101-401
Excitation system ABB module MTB-01 3HNA006035-001
Excitation system ABB module MSR04XI
Excitation system ABB module MPRC086444-005
Excitation system ABB module MPRC086444-005
Excitation system ABB module MJFA9902
Excitation system ABB module MFS3N-230V
Excitation system ABB module MFPM02
Excitation system ABB module MFE460A033BW
Excitation system ABB module MEM86-3×192/CMBMR3
Excitation system ABB module MDO32BNS
Excitation system ABB module MDI32BIS
Excitation system ABB module MCOB-02 3HNE09204-1/03
Excitation system ABB module MCCB-02 3HNA001572-001
Excitation system ABB module MCB-02 3HNA018575-001
Excitation system ABB module MB810
Excitation system ABB module MB801V512
Excitation system ABB module MB510 3BSE044219DB
Excitation system ABB module MB510 3BSE002540R1
Excitation system ABB module MB510 3BSE002540R1
Excitation system ABB module MAI32LAD
Excitation system ABB module MAI32LAD
Excitation system ABB module M3AA80B2
Excitation system ABB module M2004HW
Excitation system ABB module LXN1604-6
Excitation system ABB module LWN2660-6EG
Excitation system ABB module LWN2660-6E 3BHL000986P7002
Excitation system ABB module LWN2660-6E
Excitation system ABB module LWN2660-6
Excitation system ABB module LWN1902-6
Excitation system ABB module LTU-785
Excitation system ABB module LTC745A101 3BHE039905R0101
Excitation system ABB module LTC743CE22 3BHE013299R0022
Excitation system ABB module LTC743CE 3BHE013299R0001
Excitation system ABB module LTC743CE 3BHE013299R0001
Excitation system ABB module LTC391AE01 HIEE401782R0001
Reviews
There are no reviews yet.