Description
YPC104B Электрический фильтр ABB
Figure 4 Tool Framework
2.3Smart component creation
Call the Rotator component: This component is used to allow the rotatable grinding rotor to rotate during simulation to simulate the real grinding scene. In the
parameters of the Rotator component, set the reference to object, the reference object to the frame l, and the object to a copy of the rotor. (2) The rotary grinding rotor
can be rotated, and the speed is l20mm/s (the speed of the grinding head will affect the quality of the finished product) ), the reference center axis is: axis (based on frame
l, centerpoint x, y,: set to 0, 0, 0, Axis set x, y,: 0, 0, l000mm).
Call the Attach component: This component is used to allow the rotatable grinding rotor to be integrated with the tool body. When the tool body is installed
on the flange, it can follow the movement of the flange. In the parameters of the Attach component, set the sub-object to be a copy of the rotor (2) for the rotatable
polishing rotor, and the parent object is the tool body of a copy of the rotor. The offset and orientation are
based on the offset of point B relative to the origin. For setting, you can use the measurement tool in Robotstudio software to measure, and then set the parameters
after measurement.
Verification: Install a copy of the rotor tool body onto the robot flange, and then click Execute in the Attach component. You can observe whether the position of the
rotatable grinding rotor is correct at this time. If there is a deviation, adjust the position in time, as shown in the figure. 5 shown.
Figure 5 Tool installation
2.4 Create tool coordinate system
Use the six-point method to create the tool coordinate system Too1data on the robot teach pendant at the center of the rotor. Change the tool coordinate
system to Too1data in the basic options. At this time, click on the robot manual linear and you can drag the robot to move linearly at will.
2.5 Creating trajectories and programming
Determine the trajectory: According to the requirements of the work task, design the grinding trajectory around the workpiece and determine the trajectory
points and transition points required for the grinding trajectory. The grinding action process is shown in Figure 6.
Setting I/O and programming: Yalong IY-l3-LA industrial robot deburring and grinding system control and application equipment adopts 0sDC-52 6/o
communication board, the address is 10, Do1 is the digital output signal, the address is 1 . First set the I/O board, then set the I/O digital output signal Di1,
and then program on the simulation teaching pendant. The procedure is as follows:
PRoCmain()
setDo1: Set the Do1 signal to allow the external grinding rotor to start rotating.
waitTime1: The robot stays in place and does not move, waits for 1s, and lets the polishing rotor turn to the specified speed, transition
MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10. Point jpos10 is used as the starting
point and end point of the robot”s action.
Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10
Move4pL0,v1000,z50,Too1data1: Move straight line grinding to pL0 point
Move4p30,v1000,z50,Too1data1: Move straight line grinding to point p30
Move4p40,v1000,z50,Too1data1: Move straight line grinding to p40 point
Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10
MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10
waitTime1: wait 1s, transition
ResetDo1: Reset the Do1 signal to stop the rotor ENDPRoC
2.6 Simulation design and verification
Simulation design: Create a smart component to input the Di1 signal, and use the Di1 signal to simulate the external polishing start signal to
execute the Rotator component and Attach component of the smart component to achieve the visual effect of rotating and polishing the polishing rotor.
In the workstation logic design, the smart component input Di1 signal is associated with the robot Do1 signal, so that the robot signal Do1 can control
the smart component input Di1 signal, thereby controlling the start and stop of the rotation of the polishing rotor.
Verification: In the program of the teaching pendant, first set the pp command to move to Main, and then set the robot startup mode to automatic.
Click play in the simulation of Robotstudio software to verify whether the trajectory is consistent with the assumption, and optimize the path in time for
problems existing in the simulation.
3Summary and outlook
This design is based on the programming simulation of the Yalong Y4-1360A industrial robot deburring system to control the grinding robot workstation.
It covers aspects such as creating a workstation, setting
up tools, creating smart components, creating tool coordinate systems, creating trajectories, programming, simulation design, and verification. Starting
with it, the polishing simulation of the workstation is realized through the smart component function of Robotstudio software. The animation effect is intuitive
and lifelike, which not only facilitates teaching demonstrations, but also facilitates program debugging, and has application value for both production and teaching.
In the planning and design of the workpiece grinding trajectory, according to the different roughness and grinding amount process requirements of the
workpiece, the rotation speed, feed speed, feed amount, and grinding angle of the grinding rotor are also different. The feed amount can be adjusted in
time according to the on-site conditions. , feed speed, rotor speed, grinding angle and other parameters. After appropriate adjustments, the motion trajectory is written with the
corresponding program on the Robotstudio software to further reduce the possibility of robot collisions and singular points contained in the trajectory
during the actual debugging process. ,Optimize paths and improve debugging efficiency.
Control module DCS system spare parts DSQC124
Control module DCS system spare parts DSQC123B
Control module DCS system spare parts DSQC110
Control module DCS system spare parts DSQC104
Control module DCS system spare parts DSQC1030
Control module DCS system spare parts DSQC103
Control module DCS system spare parts DSQC1018 3HAC050363
Control module DCS system spare parts DSQC1018
Control module DCS system spare parts DSQC1018
Control module DCS system spare parts DSQC1015
Control module DCS system spare parts DSQC1000
Control module DCS system spare parts DSPX3221
Control module DCS system spare parts DSPU131 3BSE000355R1
Control module DCS system spare parts DSPU120
Control module DCS system spare parts DSPC452 57310303-A
Control module DCS system spare parts DSPC406
Control module DCS system spare parts DSPC406
Control module DCS system spare parts DSPC365
Control module DCS system spare parts DSPC3221
Control module DCS system spare parts DSPC3122
Control module DCS system spare parts DSPC3121
Control module DCS system spare parts DSPC3001
Control module DCS system spare parts DSPC174 3BSE005461R1
Control module DCS system spare parts DSPC174
Control module DCS system spare parts DSPC173
Control module DCS system spare parts DSPC172H
Control module DCS system spare parts DSPC172H
Control module DCS system spare parts DSPC172-2
Control module DCS system spare parts DSPC172
Control module DCS system spare parts DSPC172
Control module DCS system spare parts DSPC171 57310001-CC
Control module DCS system spare parts DSPC171
Control module DCS system spare parts DSPC170H
Control module DCS system spare parts DSPC170
Control module DCS system spare parts DSPC170
Control module DCS system spare parts DSPC157
Control module DCS system spare parts DSPC155
Control module DCS system spare parts DSPC154
Control module DCS system spare parts DSPC153
Control module DCS system spare parts DSPC-150
Control module DCS system spare parts DSPB120
Control module DCS system spare parts DSPB112
Control module DCS system spare parts DSPB110
Control module DCS system spare parts DSPA110
Control module DCS system spare parts DSO14
Control module DCS system spare parts DSMD113 5736045-N/1
Control module DCS system spare parts DSMD113
Control module DCS system spare parts DSMD112
Control module DCS system spare parts DSMD110
Control module DCS system spare parts DSMC112 57360001-HC
Control module DCS system spare parts DSMC112
Control module DCS system spare parts DSMB340
Control module DCS system spare parts DSMB178
Control module DCS system spare parts DSMB176
Control module DCS system spare parts DSMB175 57360001-KG
Control module DCS system spare parts DSMB175 57360001-KG
Control module DCS system spare parts DSMB-175
Control module DCS system spare parts DSMB175
Control module DCS system spare parts DSMB173
Control module DCS system spare parts DSMB151
Control module DCS system spare parts DSMB144
Control module DCS system spare parts DSMB137
Control module DCS system spare parts DSMB133 57360001-CY
Control module DCS system spare parts DSMB133
Control module DCS system spare parts DSMB127 57360001-HG
Reviews
There are no reviews yet.