Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Nine Questions and Answers on Common Faults in ABB Industrial Robot Applications
Question 1: Under what circumstances do I need to back up my robot?
Answer: 1. After the new machine is powered on for the first time.
2. Before making any modifications.
3. After completing the modification.
4. If the robot is important, conduct it regularly once a week.
5. It is best to make a backup on a USB flash drive.
6. Delete old backups regularly to free up hard drive space.
Second question: What does the alarm message 10106 maintenance time reminder mean when the robot appears?
Answer: This is the intelligent periodic maintenance reminder of ABB robots.
Question 3: What should I do if the robot enters a system failure state when it is powered on?
Answer: 1. Restart the robot.
2. If it doesn”t work, check whether there is a more detailed alarm prompt on the teaching pendant and handle it.
3. Restart.
4. If it still cannot be lifted, try B startup.
5. If it still doesn’t work, try P startup.
6. If it still doesn’t work, try I startup (this will return the robot to factory settings, be careful).
Question 4: Can robot backup be shared by multiple robots?
Answer: No, for example, the backup of robot A can only be used for robot A, not robots B or C, because this will cause system failure.
Five questions: What files can be shared in the robot backup?
Answer: If the two robots are of the same model and configuration. You can share RAPID programs and EIO files, but they must be verified before they can be used normally.
Question 6: What is the mechanical origin of the robot? Where is the mechanical origin?
Answer: The six servo motors of the robot have a unique fixed mechanical origin. Incorrectly setting the mechanical origin of the robot will cause problems such
as limited movement or malfunction of the robot, the inability to walk in a straight line, etc., and serious damage to the robot.
Question 7: How to cancel the robot 50204 motion monitoring alarm?
Answer: 1. Modify the robot action monitoring parameters (control panel – action monitoring menu) to match the actual situation.
2. Use the AccSet command to reduce the robot”s acceleration.
3. Reduce the v_rot option in the speed data.
Eight questions: What should I do if the robot alarms “50296, SMB memory data difference” when it is powered on for the first time?
Answer: 1. Select calibration in the ABB main menu.
2. Click ROB_1 to enter the calibration screen and select SMB memory.
3. Select “Advanced” and click “Clear Control Cabinet Memory” after entering.
4. Click “Close” when finished, then click “Update”.
5. Select “The control cabinet or robot has been exchanged, and the control cabinet is updated using SMB memory data.”
Question 9: How to customize the speed of robot trajectory in the RAPID program?
Answer: 1. Select program data in the main menu of the teaching pendant.
2. After finding the data type Speeddata, click New.
3. Click on the initial value. The meanings of the four variables of Speeddata are: v_tcp represents the linear operating speed of the robot, v_rot
represents the rotational operating speed of the robot, v_leax represents the linear operating speed of the additional axis, v_reax represents the rotational
operating speed of the additional axis, if there is no additional axis, then No need to modify the two.
4. The customized data can be called in the RAPID program.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
CI541V1 3BSE014666R1 |ABB| I/O module
CI535V30 3BSE022162R1 |ABB|Switch input terminal board
CI534V02 3BSE010700R1|ABB| Submodule MODBUS Interface
CI522A 3BSE018283R1 |ABB|Logic control module
CI520V1 3BSE012869R1|ABB| Digital output terminal board
LDSYN-101 3BHE005555R0101|ABB|Sequence simulation module
07ZE23 GJR2292800R202|ABB| Dual digital output module
07YS03 GJR2263800R3|ABB| PLC module card
GJR5251300R0161 |ABB| Remote extender module
07KT93 GJR5251300R0161 |ABB| Remote extender module
XVC770BE101 3BHE021083R0101 |ABB| Output module
NAIO-02|ABB|Digital input module
IMFEC12 |ABB| Analog input module
07AB61 |ABB|Switch quantity input card
07BA60 GJV3074397R1|ABB| PLC central processing unit
UNS0883A-P,V1 3BHB006208R0001|ABB|Excitation system module
UNS0880A-P,V1 3BHB006338R0001|ABB| Driver interface module
HIEE300936R0101|ABB|Analog output module
3BHE024577R0101|ABB|Network communication module
PM902F 3BDH001000R0001 |ABB|AC 900F| CPU module
UFC760BE142 3BHE004573R0142 ABB Printed circuit board
UFC760BE143 3BHE004573R0143|ABB| Distributed I/O module
PP D239 A1102 3BHE029594R1102 |ABB| AC 800PEC|Control system
SCYC 55880 |ABB|Universal digital input terminals
1TGE120010R1001|ABB| DCS module
BC820 3BSE071500R1|ABB|AC800M|CEX bus interconnection device
PM891K02|ABB|AC800M|Controller module
SM812 3BSE072270R1|ABB|AC800M|Digital I/O module
PM867K02 3BSE081638R1|ABB|System module
PM865K02 3BSE031150R1|ABB|AC800M|Network communication card
PM864K02|3BSE018164R1|ABB|AC800M
PM864K01|3BSE018161R1|ABB|Main processor
PM863K02|3BSE088382R1|ABB|AC800M|Main processor
PM863K01 3BSE088381R1|ABB|Controller unit|AC800M
PM862K02|3BSE081636R1|ABB|Controller module
PM862K01|ABB| AC800M|CPU processor
PM861K01 3BSE018157R1 ABB Servo drive
PM861K02 ABB AC800M controller
PM858K02 3BSE082896R1 ABB AC800M Safety system
PM858K01 3BSE082895R1 ABB Control module
PM857K02 3BSE088386R1 ABB CPU module
PM857K01 3BSE088385R1 ABB Control system module
METSO A413177 Communication board module
METSO A413222 Analog interface module
METSO D100532 Simulator module
METSO A413313 Analog expansion module
METSO A413310 Input interface module
METSO A413659 Signal board module
METSO D100314 Communication extension module
Reviews
There are no reviews yet.