Description
XVC769AE101 Контроллер ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.XVC769AE101
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;XVC769AE101Строительная промышленность: коммерческое и промышленное строительство.
2 Leveraging big data tool chains
After the data collected from the manufacturing product value chain is stored in the database, a data analysis system is required to analyze the data.
The manufacturing data analysis system framework is shown in Figure 1. Data is first extracted, transformed, and loaded (ETL) from different
databases into a distributed file system, such as Hadoop Distributed File System (HDFS) or a NoSQL database (such as MongoDB). Next,
machine learning and analytics tools perform predictive modeling or descriptive analytics. To deploy predictive models, the previously mentioned tools
are used to convert models trained on historical data into open, encapsulated statistical data mining models and associated metadata called Predictive
Model Markup Language (PMML), and Stored in a scoring engine. New
data from any source is evaluated using models stored in the scoring engine [9].
A big data software stack for manufacturing analytics can be a mix of open source, commercial, and proprietary tools. An example of a
manufacturing analytics software stack is shown in Figure 2. It is known from completed projects that existing stack vendors do not currently
offer complete solutions. Although the technology landscape is evolving rapidly, the best option currently is modularity with a focus on truly distributed
components, with the core idea of success being a mix of open source and commercial components [10].
In addition to the architecture presented here, there are various commercial IoT platforms. These include GE”s Predix ( www.predix.com ), Bosch”s IoT
suite (www.bosch-iot-suite.com), IBM”s Bluemix ( www.ibm.com/cloud-computing/ ), ABB based on Microsoft Azure IoT services and people platform
and Amazon’s IoT cloud (https://aws.amazon.com/iot). These platforms offer many standard services for IoT and analytics, including identity management and data
security, which are not covered in the case study here. On the other hand, the best approaches offer flexibility and customizability, making implementation
more efficient than standard commercial solutions. But implementing such a solution may require a capable data science team at the implementation site.
The choice comes down to several factors, non-functional requirements, cost, IoT and analytics.
ABB PFTL 201C-20.0 3BSE007913R20
ABB PFTL 201CE-10.0 3BSE007913R11
ABB Tension sensor 3BSE007913R11
ABB Tension sensor 3BSE007913R10
ABB PFTL 201C-10.0 3BSE007913R10
ABB PFTL 101AER-2.0 3BSE023012R1
ABB Tension sensor 3BSE023012R1
ABB Tension sensor 3BSE004213R1
ABB PFTL 101AE-2.0 3BSE004213R1
ABB PFTL 101A-2.0 3BSE004172R1
ABB Tension sensor 3BSE004172R1
ABB Tension sensor 3BSE023011R1
ABB PFTL 101AER-1.0 3BSE023011R1
ABB PFTL 101AE-1.0 3BSE004212R1
ABB 3BSE004212R1 Tension sensor
ABB 3BSE004166R1 Tension sensor
ABB PFTL 101A-1.0 3BSE004166R1
ABB PFTL 101AER-0.5 3BSE023010R1
ABB Tension sensor 3BSE023010R1
ABB Tension sensor 3BSE004160R1
ABB PFTL 101A-0.5 3BSE004160R1
ABB PFTL 101BE-20.0 3BSE004217R1
Tension sensor 3BSE004217R1 ABB
Tension sensor 3BSE023160R1 ABB
PFTL 101BER-10.0 3BSE023160R1 ABB
PFTL 101BE-10.0 3BSE004216R1 ABB
3BSE004216R1 ABB Tension sensor
3BSE004197R1 ABB Tension sensor
PFTL 101B-10.0 3BSE004197R1 ABB
PFTL 101BER-5.0 3BSE023159R1 ABB
3BSE023159R1 Tension sensor ABB
3BSE004215R1 Tension sensor ABB
PFTL 101BE-5.0 3BSE004215R1 ABB
PFTL 101BER-2.0 3BSE023158R1 ABB
3BSE023158R1 Tension sensor ABB
3BSE004214R1 Tension sensor ABB
PFTL 101BE-2.0 3BSE004214R1 ABB
3BSE004185R1 Tension sensor ABB
PFTL 101B-2.0 3BSE004185R1 ABB
ICS TRIPLEX TC-011-02-2M5
ICS TRIPLEX TC-801-02-6M5
ICS TRIPLEX TC-801-02-4M5
ICS TRIPLEX TC-314-02-2M5
ICS TRIPLEX TC-313-02
ICS TRIPLEX TC-312-02
ICS TRIPLEX TC-311-02
ICS TRIPLEX TC-305-01
ICS TRIPLEX TC-304-01
Reviews
There are no reviews yet.