Sale!

XVC768115 3BHB7211R115 Использование параметров ABB

Original price was: $1,888.00.Current price is: $1,688.00.

МодельXVC768115 3BHB7211R115

Первоначальная гарантия на один год.
XVC768115 3BHB7211R115 Параметры

XVC768115 3BHB7211R115 Размер 30 * 20 * 30
XVC768115 3BHB7211R115 Вес 2 кг

Контактное лицо: г – н Рай

WeChat: 17750010683

WhatsApp: + 86 177500 10683

Электронная почта 3221366881@qq.com

Category:

Description

XVC768115 3BHB7211R115 Использование параметров ABB
XVC768115 3BHB7211R115 Использование параметров ABB
XVC768115 3BHB7211R115 Использование параметров ABB Product details:
XVC768115 3BHB7211R115Основанная в 1988 году, Asibronbrfary Corporation (ABB) является известной крупной швейцарской многонациональной компанией со штаб – квартирой в Цюрихе,
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.XVC768115 3BHB7211R115
Компания Accibronburfary является одной из крупнейших в мире компаний, производящих промышленные, энергетические и автоматизированные продукты. перерабатывающая промышленность:
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;XVC768115 3BHB7211R115Строительная промышленность: коммерческое и промышленное строительство.
В период с 2015 по 2016 год объем продаж компании Axibronburfary достиг 32 миллиардов долларов. На фондовых биржах Цюриха, Стокгольма и Нью – Йорка.
Contact person: Mr. Lai
Mobil:17750010683
WeChat:17750010683
WhatsApp:+86 17750010683

Figure 4 Tool Framework

2.3Smart component creation

Call the Rotator component: This component is used to allow the rotatable grinding rotor to rotate during simulation to simulate the real grinding scene. In the
parameters of the Rotator component, set the reference to object, the reference object to the frame l, and the object to a copy of the rotor. (2) The rotary grinding rotor
can be rotated, and the speed is l20mm/s (the speed of the grinding head will affect the quality of the finished product) ), the reference center axis is: axis (based on frame
l, centerpoint x, y,: set to 0, 0, 0, Axis set x, y,: 0, 0, l000mm).

Call the Attach component: This component is used to allow the rotatable grinding rotor to be integrated with the tool body. When the tool body is installed
on the flange, it can follow the movement of the flange. In the parameters of the Attach component, set the sub-object to be a copy of the rotor (2) for the rotatable
polishing rotor, and the parent object is the tool body of a copy of the rotor. The offset and orientation are
based on the offset of point B relative to the origin. For setting, you can use the measurement tool in Robotstudio software to measure, and then set the parameters
after measurement.

Verification: Install a copy of the rotor tool body onto the robot flange, and then click Execute in the Attach component. You can observe whether the position of the
rotatable grinding rotor is correct at this time. If there is a deviation, adjust the position in time, as shown in the figure. 5 shown.
Figure 5 Tool installation

2.4 Create tool coordinate system

Use the six-point method to create the tool coordinate system Too1data on the robot teach pendant at the center of the rotor. Change the tool coordinate
system to Too1data in the basic options. At this time, click on the robot manual linear and you can drag the robot to move linearly at will.

2.5 Creating trajectories and programming

Determine the trajectory: According to the requirements of the work task, design the grinding trajectory around the workpiece and determine the trajectory
points and transition points required for the grinding trajectory. The grinding action process is shown in Figure 6.
Setting I/O and programming: Yalong IY-l3-LA industrial robot deburring and grinding system control and application equipment adopts 0sDC-52 6/o
communication board, the address is 10, Do1 is the digital output signal, the address is 1 . First set the I/O board, then set the I/O digital output signal Di1,
and then program on the simulation teaching pendant. The procedure is as follows:

PRoCmain()

setDo1: Set the Do1 signal to allow the external grinding rotor to start rotating.

waitTime1: The robot stays in place and does not move, waits for 1s, and lets the polishing rotor turn to the specified speed, transition

MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10. Point jpos10 is used as the starting
point and end point of the robot”s action.

Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10

Move4pL0,v1000,z50,Too1data1: Move straight line grinding to pL0 point

Move4p30,v1000,z50,Too1data1: Move straight line grinding to point p30

Move4p40,v1000,z50,Too1data1: Move straight line grinding to p40 point

Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10

MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10

waitTime1: wait 1s, transition

ResetDo1: Reset the Do1 signal to stop the rotor ENDPRoC

2.6 Simulation design and verification

Simulation design: Create a smart component to input the Di1 signal, and use the Di1 signal to simulate the external polishing start signal to
execute the Rotator component and Attach component of the smart component to achieve the visual effect of rotating and polishing the polishing rotor.
In the workstation logic design, the smart component input Di1 signal is associated with the robot Do1 signal, so that the robot signal Do1 can control
the smart component input Di1 signal, thereby controlling the start and stop of the rotation of the polishing rotor.

Verification: In the program of the teaching pendant, first set the pp command to move to Main, and then set the robot startup mode to automatic.
Click play in the simulation of Robotstudio software to verify whether the trajectory is consistent with the assumption, and optimize the path in time for
problems existing in the simulation.

3Summary and outlook

This design is based on the programming simulation of the Yalong Y4-1360A industrial robot deburring system to control the grinding robot workstation.
It covers aspects such as creating a workstation, setting
up tools, creating smart components, creating tool coordinate systems, creating trajectories, programming, simulation design, and verification. Starting
with it, the polishing simulation of the workstation is realized through the smart component function of Robotstudio software. The animation effect is intuitive
and lifelike, which not only facilitates teaching demonstrations, but also facilitates program debugging, and has application value for both production and teaching.

In the planning and design of the workpiece grinding trajectory, according to the different roughness and grinding amount process requirements of the
workpiece, the rotation speed, feed speed, feed amount, and grinding angle of the grinding rotor are also different. The feed amount can be adjusted in
time according to the on-site conditions. , feed speed, rotor speed, grinding angle and other parameters. After appropriate adjustments, the motion trajectory is written with the
corresponding program on the Robotstudio software to further reduce the possibility of robot collisions and singular points contained in the trajectory
during the actual debugging process. ,Optimize paths and improve debugging efficiency.

PMC008A 700502  RAMIX  PMC to Mezzanine Adapter
IS200PMCIH1ABA GE Printed Circuit Board
IS215UCVEM08B   GE  PROCESSOR BOARD
8AC120   B&R  ACOPOS plug-in module, CAN interface
SCYC51020 58052582H   ABB  FIRING UNIT CARD
3500-42M 176449-02  Bently Nevada Proximitor/Seismic Monitor
8AC110  B&R  ACOPOS plug-in module, CAN interface
SCYC51010 58052515G  ABB  FIRING UNIT CARD
SR750-P5-G5-S5-HI-A20-R-T GE 750 Series Feeder Mgmt Relay
CLS208  WATLOW ANAFAZE temperature controller
P4LQA HENF209736R0003 ABB  Control Board
FBM230  P0926GU FOXBORO COMMUNICATION MODULE
6105-WA-PDPS PROSOFT  WIRELESS PROFIBUS GATEWAYS
6104-WA-PDPM  PROSOFT WIRELESS PROFIBUS GATEWAYS
SPASI23  ABB   AI Module
SPS5785 51198651-100  HONEYWELL Power Supply
1C31194G01  WESTINGHOUSE  alve Positioner Electronics Module
MVME147S-1   MOTOROLA  MPU VME Module
F650-G-N-A-B-F-2-G-1-HI-C-E GE Feeder Protection & Bay Controller
A6140 9199-00058 EMERSON  Controller module
3664 TRICONEX Digital Output Module
AIM0006 2RCA021397A0001F  ABB  Card board
K9203A 996920360 HIMA Heat dissipation fan module
K9203 996920302   HIMA  Heat dissipation fan module
S72402-NANANA  KOLLMORGEN  Servo Drive
SK827005 SK827100-AS ABB CONTACTOR EH550-30-11 480V 60Hz
AIP591 YOKOGAWA Transceiver Control Unit for V net Repeater
SR469-P5-HI-A20-E  GE  Motor Management Relay line
AIP171 YOKOGAWA Transceiver Control Unit for V net Repeater
D136-002-005 D138-002-002 MOOG Controller module
TP830 3BSE018114R1 ABB Baseplate for Processor Module
TB852 3BSC950263R1  ABB  RCU Link Terminator
5SHX1445H0001  ABB  semiconductor module
F8650X HIMA CPU Module
F8627X  HIMA  Ethernet Communication Module
F8627  HIMA  Ethernet Communication Module
F8621A HIMA  CPU Module
F7131 HIMA  Power Supply Monitoring
F7126 HIMA Power Supply Module
VE3007 KJ2005X1-BA1 12P4375X012 MX Controller
TPMC815-11 TEWS  ARCNET Interface Module
TC-4000-S ATLAS DC Controller QST

Reviews

There are no reviews yet.

Be the first to review “XVC768115 3BHB7211R115 Использование параметров ABB”

Your email address will not be published. Required fields are marked *