Description
XV-363-57-C02-A00-1B Экран Eaton
современными требованиями дизайна. Как и XV303, конденсаторный многоточечный сенсорный дисплей поддерживает реализацию
современного пользовательского интерфейса (управление жестами)
и предлагает 7 – и 10 – дюймовые дисплеи, в том числе версии с высоким соотношением сторон 16: 9.
просто и требует меньше компонентов и инженерных работ, чем традиционная проводка. SmartWire – DT интегрирует связь и ввод / вывода
непосредственно в устройства управления, отображения и переключения, открывая новые возможности для инновационных и экономичных решений.
ABB: Запасные части для промышленных роботов серии DSQC, Bailey INFI 90, IGCT, например: 5SHY6545L0001 AC1027001R0101 5SXE10 – 0181, 5SHY3545 L0009, 5SHI3545L0010 3BHB013088 R0001 3BHE009681R0101 GVC750BE101, PM866, PM861K01, PM864, PM510V16, PPD512, PPPD113, PP836A, P865A, 877, PPP881, PPPP885, PPSL500000 4 3BHL00390P0104 5SGY35L4510 и т.д.
General Electric: запасные части, такие как модули, карты и приводы. Например: VMVME – 7807, VMVME – 7750, WES532 – 111, UR6UH, SR469 – P5 – HI – A20, IS230SRTDH2A, IS220PPDAH1B, IS215UCVEH2A, IC698CPE010, IS200SRTDH2ACB и т.д.
Система Bently Nevada: 350 / 3300 / 1900, предохранительные зонды и т.д., например: 3500 / 22M, 3500 / 32, 3500 / 15, 3500 / 23500 / 42M, 1900 / 27 и т.д.
Системы Invis Foxboro: Серия I / A, управление последовательностью FBM, трапециевидное логическое управление, обработка отзыва событий, DAC,
обработка входных / выходных сигналов, передача и обработка данных, такие как FCP270 и FCP280, P0904HA, E69F – TI2 – S, FBM230 / P0926GU, FEM100 / P0973CA и т.д.
Invis Triconex: Модуль питания, модуль CPU, модуль связи, модуль ввода – вывода, например 300830937214351B, 3805E, 831235114355X и т.д.
Вудворд: контроллер местоположения SPC, цифровой контроллер PEAK150, например 8521 – 0312 UG – 10D, 9907 – 149, 9907 – 162, 9907 – 164, 9907 – 167, TG – 13 (8516 – 038), 8440 – 1713 / D, 9907 – 018 2301A, 5466 – 258, 8200 – 226 и т.д.
Hima: модули безопасности, такие как F8650E, F8652X, F8627X, F8678X, F3236, F6217, F6214, Z7138, F8651X, F8650X и т.д.
Honeywell: Все платы DCS, модули, процессоры, такие как: CC – MCAR01, CC – PAIH01, CC – PAIH02, CC – PAIH51, CC – PAIX02, CC – PAON01, CC – PCF901, TC – CR014, TC – PD011, CC – PCNT02 и т.д.
Motorola: серии MVME162, MVME167, MVME172, MVME177, такие как MVME5100, MVME5500 – 0163, VME172PA – 652SE, VME162PA – 344SE – 2G и другие.
Xycom: I / O, платы VME и процессоры, такие как XVME – 530, XVME – 674, XVME – 957, XVME – 976 и т.д.
Коул Морган: Сервоприводы и двигатели, такие как S72402 – NANA, S6201 – 550, S20330 – SRS, CB06551 / PRD – B040SSIB – 63 и т. Д.
Bosch / Luxer / Indramat: модуль ввода / вывода, контроллер PLC, приводной модуль, MSK060C – 0600 – NN – S1 – UP1 – NNN, VT2000 – 52 / R900033828, MHD041B – 144 – PG1 – UN и т.д.
(5) Perform predictive maintenance, analyze machine operating conditions, determine the main
causes of failures, and predict component failures to avoid unplanned downtime.
Traditional quality improvement programs include Six Sigma, Deming Cycle, Total Quality Management (TQM), and Dorian Scheinin’s
Statistical Engineering (SE) [6]. Methods developed in the 1980s and 1990s are typically applied to small amounts
of data and find univariate relationships between participating factors. The use of the MapReduce paradigm to simplify data processing in
large data sets and its further development have led to the mainstream proliferation of big data analytics [7]. Along with the development of
machine learning technology, the development of big data analytics has provided a series of new tools that can be applied to manufacturing
analysis. These capabilities include the ability to analyze gigabytes of data in batch and streaming modes, the ability to find complex multivariate
nonlinear relationships among many variables, and machine learning algorithms that separate causation from correlation.
Millions of parts are produced on production lines, and data on thousands of process and quality measurements are collected for them, which is
important for improving quality and reducing costs. Design of experiments (DoE), which repeatedly explores thousands of causes through
controlled experiments, is often too time-consuming and costly. Manufacturing experts rely on their domain knowledge to detect key
factors that may affect quality and then run
DoEs based on these factors. Advances in big data analytics and machine learning enable the detection of critical factors that effectively
impact quality and yield. This, combined with domain knowledge, enables rapid detection of root causes of failures. However,
there are some unique data science challenges in manufacturing.
(1) Unequal costs of false alarms and false negatives. When calculating accuracy, it must be recognized that false alarms
and false negatives may have unequal costs. Suppose a false negative is a bad part/instance that was wrongly predicted to
be good. Additionally, assume that a false alarm is a good part that was incorrectly predicted as bad. Assuming further that
the parts produced are safety critical, incorrectly predicting that bad parts are good (false negatives) can put human lives
at risk. Therefore, false negatives can be much more costly than false alarms. This trade-off needs to be considered when
translating business goals into technical goals and candidate evaluation methods.
5SHX1445H0001 Servo driver
5SHX1060H0003 Driving circuit
5SHX06F6004
5KCP39PG motor
5AP1130.156C-000 touch screen
4PP220.0571-R5 touch screen
4P3040 Touch screen
3HNA025019-001
3HNA015149-001 Electric machine
3HAC040658-001Electric machine
3HAC026272-001 module
3HAC025917-001 Digital input/output module
3HAC025562-00106 Capacitance unit
3HAC025562-001 Capacitance unit
3HAC025466-001 fan
3HAC025338-006 Servo drive unit
3HAC17484-8108 Rotating ac motor
3HAC17326-102 Motor M26 Type B
3HAC16831-1 LITHIUM 34X102X63
3BHE039203R0101-GVC736CE101
3BHB003688R0101
3BE101 Digital input/output module
3BDH000741R1 Temperature input
3AUA0000040000 Drive maintenance tool
3ASC25H204 Power module
3AFE61320946P0001 Central processing
2RCA007120D2RCA007128A0001C relay
2RCA006836A0001E Feeder protection
2RCA006835A0002E2RCA021946B Output adapter module
2RAA005904A0001 Operating interface
2N3A8204-B transistor
2MLL-EFMTB-CC Ethernet
2DS100.60-1 Automated production line
2CP200.60-1 Industrial PC
2CCS862001R0105 High performance circuit breaker
1X00797H01L Power module.
1X00781H01L Decentralized control system
1X00416H01 Power module
1VCF752000 Feeder terminal
1TGE120028R0010 System interface
1TGE120021R0010 Configuration switch
1TGE120011R1001 Driving power supply
1SVR040000R1700 Universal signal converter
1SVR011718R2500
1SNA684252R0200 Ethernet converter
1SAR700012R0005 Pluggable interface relay
Analog input/output module 1SAP250100R0001
Terminal unit 1SAJ924007R0001
1MRS050729 Ethernet gateway
1C31124G01 module
1C31116G04 Voltage band temperature sensor
0-60028-2 Driver interface module
0-60023-5 Ac power module
0-60007-2 Drive power module
0-57510 Variable speed driver
мы организуем фото на складе, чтобы подтвердить
чтобы вернуть их вам. Конечно, мы ответим на ваши озабоченности как можно скорее.
Специально рекомендуемые продукты:
http://www.dcsmodule.ru/product/531x305ntbapg1-general-electric/
Reviews
There are no reviews yet.