Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Distinguished according to whether there is a position sensor, first of all, it is divided into sensing
and non-sensing. That is, whether Hall or other similar position sensors are used to sense the
position angle of the stator and rotor. In air pump applications, many use non-inductive control.
The excellent algorithm of through-hole is that after the motor is running, it detects the changes in
phase current to switch the phase current. In some heavy-duty or precise control applications,
sensory methods are used.
According to the three-phase power supply of the inverter, it can be divided into square wave control
and sine wave control. The square wave control strategy is simple, and the control process is direct
and effective. It adopts a six-step commutation strategy. The CPU modulates the PWM to drive the
power switch tube to generate a three-phase power supply that can run the motor. The control strategy
of sine wave is relatively complex, but the control effect is much better.
In sine wave control, there are two main control strategies.
One is direct torque control DTC Baidu Encyclopedia. The method is to calculate the estimated values
of motor flux and torque based on the measured motor voltage and current. After controlling the torque,
the motor speed can also be controlled. Direct torque control is a patent of the European ABB company. .
The second is, space vector control FOC Baidu Encyclopedia. Its essence is to equate an AC motor to a DC
motor, and independently control the speed and magnetic field components. By controlling the rotor flux linkage,
and then decomposing the stator current, the two components of torque and magnetic field are obtained. After
coordinate transformation, the normal motor is realized. handover or decoupling control.
During sine wave control, there are many derived more sophisticated control strategies, such as feedforward
control, maximum torque control, field weakening control, etc.
In the process of controlling the motor, there are multiple feedback control loops. When controlling the output
of the motor, there is a current loop; on this basis, there is a control loop that controls the speed; when a servo
motor is used, there is a position loop control.
Excitation system ABB module BSM0400CN00
Excitation system ABB module BSFC-02C
Excitation system ABB module BRC410
Excitation system ABB module BRC410
Excitation system ABB module BRC400
Excitation system ABB module BRC400
Excitation system ABB module BRC400
Excitation system ABB module BRC3000A
Excitation system ABB module BRC-300
Excitation system ABB module BRC300
Excitation system ABB module BRC300
Excitation system ABB module BRC300
Excitation system ABB module BRC200
Excitation system ABB module BRC-100
Excitation system ABB module BRC-100
Excitation system ABB module BP914S
Excitation system ABB module BP910S
Excitation system ABB module BP901S
Excitation system ABB module BIOC-01
Excitation system ABB module BI934S
Excitation system ABB module BI933S
Excitation system ABB module BI924S
Excitation system ABB module BI923S
Excitation system ABB module BI914S
Excitation system ABB module BI913S
Excitation system ABB module BDD110 HNLP205879R1
Excitation system ABB module BCU-02
Excitation system ABB module BC810K02 3BSE031155R1
Excitation system ABB module BC810K02
Excitation system ABB module BC810K02
Excitation system ABB module BC810K02
Excitation system ABB module BC810K01 3BSE031154R1
Excitation system ABB module BC810K01
Excitation system ABB module BC810
Excitation system ABB module BC25
Excitation system ABB module BB174
Excitation system ABB module Bailey PCM-10
Excitation system ABB module B5EEd HENF105082R4
Excitation system ABB module B5EC HENF105077R1
Excitation system ABB module B3EA HENF315147R1
Excitation system ABB module AX722F
Excitation system ABB module AX721F
Excitation system ABB module AX670 3BSE000566R1
Excitation system ABB module AX670
Excitation system ABB module ATPU-02A 3HNA004440-001
Excitation system ABB module ASFC-01C
Excitation system ABB module ASDI-03 3HNA010255-001
Excitation system ABB module ARC093AV1 HIEE300690R1
Excitation system ABB module ARC093AV1
Excitation system ABB module APSAF03
Excitation system ABB module APIP-05 3HNA018573-001
Excitation system ABB module APBU-44C 64669982
Excitation system ABB module APBU-44C
Excitation system ABB module APBU-44C
Excitation system ABB module AOFC-02
Excitation system ABB module AO930S
Excitation system ABB module AO930N
Excitation system ABB module AO930B
Excitation system ABB module AO920S
Excitation system ABB module AO920N
Excitation system ABB module AO920B
Excitation system ABB module AO910S
Excitation system ABB module AO910S
Excitation system ABB module AO910N
Excitation system ABB module AO910B
Excitation system ABB module AO910
Excitation system ABB module AO895 3BSC690087R1
Excitation system ABB module AO895
Excitation system ABB module AO890
Excitation system ABB module AO890
Reviews
There are no reviews yet.