Description
VMIVME-7807 High performance 16 bit analog-to-digital converter board
высотой 3U, расположенный в раме управления под DSPX.
волоконно – оптический разъем на передней панели и передаются в модуль обнаружения заземления.
ABB: Запасные части для промышленных роботов серии DSQC, Bailey INFI 90, IGCT, например: 5SHY6545L0001 AC1027001R0101 5SXE10 – 0181, 5SHY3545 L0009, 5SHI3545L0010 3BHB013088 R0001 3BHE009681R0101 GVC750BE101, PM866, PM861K01, PM864, PM510V16, PPD512, PPPD113, PP836A, P865A, 877, PPP881, PPPP885, PPSL500000 4 3BHL00390P0104 5SGY35L4510 и т.д.
General Electric: запасные части, такие как модули, карты и приводы. Например: VMVME – 7807, VMVME – 7750, WES532 – 111, UR6UH, SR469 – P5 – HI – A20, IS230SRTDH2A, IS220PPDAH1B, IS215UCVEH2A, IC698CPE010, IS200SRTDH2ACB и т.д.
Система Bently Nevada: 350 / 3300 / 1900, предохранительные зонды и т.д., например: 3500 / 22M, 3500 / 32, 3500 / 15, 3500 / 23500 / 42M, 1900 / 27 и т.д.
Системы Invis Foxboro: Серия I / A, управление последовательностью FBM, трапециевидное логическое управление, обработка отзыва событий, DAC,
обработка входных / выходных сигналов, передача и обработка данных, такие как FCP270 и FCP280, P0904HA, E69F – TI2 – S, FBM230 / P0926GU, FEM100 / P0973CA и т.д.
Invis Triconex: Модуль питания, модуль CPU, модуль связи, модуль ввода – вывода, например 300830937214351B, 3805E, 831235114355X и т.д.
Вудворд: контроллер местоположения SPC, цифровой контроллер PEAK150, например 8521 – 0312 UG – 10D, 9907 – 149, 9907 – 162, 9907 – 164, 9907 – 167, TG – 13 (8516 – 038), 8440 – 1713 / D, 9907 – 018 2301A, 5466 – 258, 8200 – 226 и т.д.
Hima: модули безопасности, такие как F8650E, F8652X, F8627X, F8678X, F3236, F6217, F6214, Z7138, F8651X, F8650X и т.д.
Honeywell: Все платы DCS, модули, процессоры, такие как: CC – MCAR01, CC – PAIH01, CC – PAIH02, CC – PAIH51, CC – PAIX02, CC – PAON01, CC – PCF901, TC – CR014, TC – PD011, CC – PCNT02 и т.д.
Motorola: серии MVME162, MVME167, MVME172, MVME177, такие как MVME5100, MVME5500 – 0163, VME172PA – 652SE, VME162PA – 344SE – 2G и другие.
Xycom: I / O, платы VME и процессоры, такие как XVME – 530, XVME – 674, XVME – 957, XVME – 976 и т.д.
Коул Морган: Сервоприводы и двигатели, такие как S72402 – NANA, S6201 – 550, S20330 – SRS, CB06551 / PRD – B040SSIB – 63 и т. Д.
Bosch / Luxer / Indramat: модуль ввода / вывода, контроллер PLC, приводной модуль, MSK060C – 0600 – NN – S1 – UP1 – NNN, VT2000 – 52 / R900033828, MHD041B – 144 – PG1 – UN и т.д.
Although it was established only a few months ago, ABB Future Lab has already cooperated with Huawei to
complete the AI training of garbage sorting robots in two months. This robot uses AI technology based on Huawei
chips and uses industrial cameras to sort objects.
Obviously, adjusting the business model and organizational structure is an important reason why ABB has
lways been at the forefront of the industry.
From technology iteration to application implementation, ABB aims to provide complete solutions
As a pioneer in manufacturing automation and digitalization, ABB”s products in the automation field are constantly
improving, and its application industries are also expanding.
In Alf”s view, the structure and construction of automation have not changed much in the past 30 years. From signal
collection and information transmission to work scenarios or operational interfaces, the flow of information in automated systems has basically not changed.
But the arrival of 5G may change the way information is transmitted between devices. 5G’s characteristics such as large
capacity, high reliability and low latency make it possible to realize independent connections between devices. If real-time
mainline connection can be achieved and installed on the cloud or platform, it will be a more disruptive application.
5G will not only change the way ABB operates, but is also likely to introduce digitalization into the industry, including digital
operation and maintenance. ABB has launched an industrial Internet solution called ABB Ability, which firstly provides a platform
, and secondly, it includes all ABB”s digital cloud products, such as equipment industrial solutions and transportation solutions.
In addition to digitization, another focus of Alf is the autonomy of machines. He took the autonomous management of
autonomous driving and warehousing as examples to think about the development process of machine autonomy –
from human operation to machine operation, and ultimately to autonomous implementation and testing without the need for humans at all.
For ABB, in addition to popular autonomous driving technology, industrial production scenarios also have strong
demand for the autonomy of machinery and equipment, such as autonomous docking of ships and the mining industry
. In some industrial scenarios represented by mining, toxic gases and substances in the working environment are
harmful to the human body, so equipment
is required to have the ability to enter and leave the mine independently. ABB first needs to study the value proposition
of these businesses, discover potential applications, and then discover in which fields it can be applied.
A technology close to autonomy is artificial intelligence. Since its birth in the 1960s, it has been attracting people”s
attention, and there have been endless discussions about “robot replacement”. After decades of development,
related technologies have gradually matured, and more and more AI technologies have begun to be discussed
in the application field. The products and technologies
of leading manufacturers such as ABB have attracted much attention.
ABB has been applying AI technology to its products for 20 years, but its current mature products are mainly
diagnostic applications based on traditional statistics. Alf introduced to Yiou New Manufacturing that
as part of the diagnostic solution, this technology is mainly used to implement condition monitoring functions
. More mature applications are reflected in the automated management of equipment, such as the electronic
management of ships.
Machine learning is another promising AI technology. At the World Artificial Intelligence Conference at the
end of August this year, ABB demonstrated a coffee workbench composed of a two-arm collaborative robot Yu Mi.
Through guided programming of YuMi, the collaborative robot can learn and
remember the barista”s movements to complete the complete process of making coffee, latte art and delivering it to the audience.
In actual implementation scenarios, this technology is used to transform terminals carrying containers. By simulating the
location and status of box handling, the collected data is used to train the AI, allowing the AI to know the
location of the container, thereby achieving automation.
From automation, digitalization, autonomy and artificial intelligence technologies, ABB is not a blind pursuer of
emerging technology concepts. It pays more attention to customer needs and actual implementation, and achieves
better solutions through different product combinations.
There are two major difficulties in balancing R&D and business and implementing solutions.
As a commercial company, ABB still needs to consider the balance between R&D investment and revenue.
In Alf”s view, they do not have unlimited R&D resources, so they need to focus on finding a balance between
improving original product functions and developing new functions. In terms of technology research and development,
we also need to try to focus on projects that can bring the greatest value to the company.
Regarding the specific implementation of digital solutions, Alf believes that there are currently two main difficulties.
The first difficulty is that ABB cannot just develop a general solution, because different industry segments
have different needs, so it must design solutions that suit their different needs. ABB not only needs to master
knowledge in different fields and different applications, but also needs to consider the availability of data.
The second difficulty lies in the use of data, because AI requires a large amount of data training. On
the one hand, ABB needs to encourage customers to provide data for training models; on the other hand,
ABB also needs to ensure customers the privacy, ownership and security of their data.
“Industrial artificial intelligence needs to be combined with models and data. But the most
important thing is that we must provide value to customers through the use of AI, otherwise we will just
apply technology for the sake of applying technology.” Alf concluded.
Excitation system ABB module 3BSC950192R1
Excitation system ABB module 3BSC690126R2
Excitation system ABB module 3BSC690103R2
Excitation system ABB module 3BSC690103R1
Excitation system ABB module 3BSC690102R2
Excitation system ABB module 3BSC690102R1
Excitation system ABB module 3BSC690076R5
Excitation system ABB module 3BSC630149R0001PXUB201
Excitation system ABB module 3BIE010749
Excitation system ABB module 3BHT300036R1
Excitation system ABB module 3BHT300032R1
Excitation system ABB module 3BHT300025R1
Excitation system ABB module 3BHL000986P7002
Excitation system ABB module 3BHL000986P7001 LWN1902-6
Excitation system ABB module 3BHL000986P7001
Excitation system ABB module 3BHL000986P7001
Excitation system ABB module 3BHL000986P7000
Excitation system ABB module 3BHL000986P0006
Excitation system ABB module 3BHL000986P0006
Excitation system ABB module 3BHL000764P0001
Excitation system ABB module 3BHL000396P0001
Excitation system ABB module 3BHL000392P0101
Excitation system ABB module 3BHL000391P0101
Excitation system ABB module 3BHL000390P0104 5SHX1960L0004
Excitation system ABB module 3BHL000320P0001
Excitation system ABB module 3BHL000250P0002
Excitation system ABB module 3BHE059696R0001
Excitation system ABB module 3BHE056573R0101
Excitation system ABB module 3BHE041464R0101
Excitation system ABB module 3BHE039770R0102 PPD539A102
Excitation system ABB module 3BHE039426R0101 UFC912A101
Excitation system ABB module 3BHE039203R0101 GVC736CE101
Excitation system ABB module 3BHE039203R0101
Excitation system ABB module 3BHE037864R0106
Excitation system ABB module 3BHE037864R0106
Excitation system ABB module 3BHE035301R0003
Excitation system ABB module 3BHE035301R0001
Excitation system ABB module 3BHE033067R0101
Excitation system ABB module 3BHE032285R0102 XVC772A102
Excitation system ABB module 3BHE032285R0102
Excitation system ABB module 3BHE032025R0101
Excitation system ABB module 3BHE031065R0020
Excitation system ABB module 3BHE029110R0111
Excitation system ABB module 3BHE029110R0111
Excitation system ABB module 3BHE028959R0101 PPC902CE101
Excitation system ABB module 3BHE028761R1002
Excitation system ABB module 3BHE028761R1001
Excitation system ABB module 3BHE027859R0102 DDC779CE102
Excitation system ABB module 3BHE026284R0102
Excitation system ABB module 3BHE024855R1101
Excitation system ABB module 3BHE024855R0101
Excitation system ABB module 3BHE024855R0101
Excitation system ABB module 3BHE024577R0101 PPC907BE
Excitation system ABB module 3BHE024577R0101 HIEE401807R0001
Excitation system ABB module 3BHE024577R0101
Excitation system ABB module 3BHE024577R0101
Excitation system ABB module 3BHE024415R0101
Excitation system ABB module 3BHE023584R2025
Excitation system ABB module 3BHE022455R1101
Excitation system ABB module 3BHE022333R0101
Excitation system ABB module 3BHE022294R0101 GFD233
Excitation system ABB module 3BHE022294R0101
Excitation system ABB module 3BHE022287R0001
Excitation system ABB module 3BHE021951R0124
Excitation system ABB module 3BHE021951R0124
Excitation system ABB module 3BHE021889R0101 UFC721BE101
Excitation system ABB module 3BHE021889R0101
мы организуем фото на складе, чтобы подтвердить
чтобы вернуть их вам. Конечно, мы ответим на ваши озабоченности как можно скорее.
Reviews
There are no reviews yet.