Description
UNITROL1000 Электрический фильтр ABB
CC – Link и другие. Каждый слот IO может быть выбран автономно в соответствии с потребностями клиента, а один модуль поддерживает до 16 каналов.
Технологии основаны на инновацияхUNITROL1000 Предоставление клиентам высококачественных и надежных продуктов всегда было постоянным стремлением к нулю.
Давайте посмотрим на его инновации и различия с предшественниками: с жидкокристаллическим дисплеем, вы можете увидеть параметры связи, состояние канала IO,
информацию о версии модуля и так далее; UNITROL1000 Отладка и обслуживание более интуитивно понятны; ABS огнестойкая пластиковая оболочка, небольшой размер,
легкий вес, с использованием совершенно новой пряжки монтажной карты, установка более прочная и надежная.
3.2 Machine learning
As the functionality of distributed computing tools such as Spark MLLib (http://spark.apache.org/mllib) and SparkR (http://spark.apache
.org/docs/latest/index.html) increases, it becomes It is easier to implement distributed and online machine learning models, such as support
vector machines, gradient boosting trees and decision trees for large amounts of data. Test the impact of different machine parameters and process
measurements on overall product quality, from correlation analysis to analysis of variance and chi-square hypothesis testing to help determine the impact of individual
measurements on product quality. This design trains some classification and regression
models that can distinguish parts that pass quality control from parts that do not. The trained models can be used to infer decision rules. According to the highest purity rule,
purity is defined as Nb/N, where N is the number of products that satisfy the rule and Nb is the total number of defective or bad parts that satisfy the rule.
Although these models can identify linear and nonlinear relationships between variables, they do not represent causal relationships. Causality is critical to
determining the true root cause, using Bayesian causal models to infer causality across all data.
3.3 Visualization
A visualization platform for collecting big data is crucial. The main challenge faced by engineers is not having a clear and comprehensive overview of the complete manufacturing
process. Such an overview will help them make decisions and assess their status before any adverse events occur. Descriptive analytics uses tools such as
Tableau (www.tableau.com) and Microsoft BI (https://powerbi.microsoft.com/en-us) to help achieve this. Descriptive analysis includes many views such as
histograms, bivariate plots, and correlation plots. In addition to visual statistical descriptions,
a clear visual interface should be provided for all predictive models. All measurements affecting specific quality parameters can be visualized and the data
on the backend can be filtered by time.
PPC-R22.1N-N-Q1-NN-NN-FW Rexroth HCS Compact Converters
0100-20100 AMAT Analog I/O VME Module
IC693PWR324 90-30 series 30-watt power supply
RDIOR420 KONGSBERG Control and Monitoring System
FBM242 P0916TA Discrete Output Interface Module
CC-PDIS01 Experion Series-C I/O Module HONEYWELL
FBM216 P0922VV Redundant HART® Communication Input Module
330190-040-00-CN 3300 XL 8mm Proximity Transducer System
FBM217 P0916PW Discrete Input Interface Module FOXBORO
JRMSI-120XBP01200 MOUNT BASE RACK Schneider
FBM217 P0914TR Discrete Input Interface Module
IC693MDL940 90-3- Series Programmable Logic Controller
IC693ALG392 GE Analog Current/Voltage Output
1794-AENT Flex I/O communication adapter Allen-Bradley
1784-CF64 Compact flash card Allen-Bradley
1756-RM ControlLogix enhanced redundancy module
330980-51-00 3300 XL NSv Proximitor Sensor
1794-IB32 Allen-Bradley Flex I/O DC input module
1794-IE12 Flex IO High Density Analog Input Module
1794-OE12 Allen-Bradley Flex IO analog output module
1794-OB32P Determined by installed terminal base
1769-L36ERMA 1769 CompactLogix controller Allen-Bradley
S-073N 3BHB009884R0021 ABB ACS2000 high voltage inverter
1756-OB32 ControlLogix Discrete output module Allen-Bradley
FBM214 P0922VT HART Communication Input Interface Module
PXIE-5105 8-Channel PXI Oscilloscope NI
128164-07-204-10-02-05 3300 XL NSv Proximity Transducer
128164-08-204-10-02-05-RU 3300 XL NSv Proximity Transducer
128164-02-312-05-02-05 3300 XL NSv Proximity Transducer
170133-090-00 PROXIMITY SENSOR MODULE
128164-05-204-10-02-RU 3300 XL NSv Proximity Transducer
3500/40-04-00 Bently Nevada Proximitor Monitor
140734-02 Bently Nevada 3500/42m Proximitor Seismic Monitor
330130-080-01-05-RU 3300 XL Standard Extension Cable
330104-15-25-05-02-05-RU 3300 XL 8 mm Proximity Probes
163179-01 Bently Nevada Temperature Monitors
330180-91-RU Bently Nevada 330180 Proximity Sensor
330196-05-30-10-RU 3300 XL 8mm Reverse Mount Probes
330130-080-12-05 3300 XL 8mm Proximity Transducer System
3500/22-01-01-R0 288055-01 146031-01 Transient Data
330130-070-01-05 3300 XL STANDARD EXTENSION CABLE
330104-00-04-10-02-RU 3300 XL 8 mm Proximity Probes
330180-91-05-RU Bently Nevada 330180 Proximity Sensor
3500/15-04-04-00 Bently Nevada Power Supply
330130-080-12-RU 3300 XL Extension Cable
330750-60-RU High Temperature Velomitor System
330103-00-07-10-02-05 3300 XL 8 mm Proximity Probes
330103-00-07-05-02-RU Bently Nevada Extension Cable
177230-01-01-RU Bently Nevada Seismic Transmitter
330103-00-17-10-02-05 3300 XL 8 mm Proximity Probes
330102-20-55-10-02-RU 3300 XL 8 mm Proximity Probes
330130-045-01-05 Bently Nevada Extension Cable
330103-08-13-10-02-05 3300 XL 8 mm Proximity Probes
Reviews
There are no reviews yet.