Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Design of ABB industrial robot deburring and grinding workstation based on RobotStudio simulation software
introduction
As an official offline programming software for ABB robots, Robotstudio not only has powerful simulation and offline programming functions, but also has automatic path generation
function and simulation monitoring collision function. It can realize the simulation of robots in real scenes, so as to timely update existing robot programs. optimize. On-site teaching
programming will affect normal production activities on site.
The application of Robotstudio software offline programming can reduce on-site teaching and programming time.
As a traditional process of mechanical processing, deburring and grinding have a wide range of applications. However, for a long time, in the process of manual deburring
and polishing, there have been differences in operations between workers. The manual operation is not repeatable and the deburring effect is unstable, which has seriously
affected the surface quality and service life of the finished product; and the working environment There is a large amount of dust floating in the air and the conditions are harsh,
seriously endangering the physical and mental health of workers. With the proposal of “Made in China 2025”, intelligent manufacturing production has become an
important development direction for the transformation and upgrading of the future manufacturing industry. The use of industrial robot automated production lines for repetitive
batch processing operations can not only greatly improve production efficiency, but also greatly improve product quality. Yield and production stability. Therefore, before designing
the robot polishing program, if the shape, size and polishing amount of the workpiece to be polished are known, the robot offline program can be written on the
Robotstudio software according to the existing conditions, thereby improving the efficiency of on-site programming.
1Design task description
This task is to create a new simulation workstation in ABB robot simulation software Robotstudio. The corresponding training equipment in reality is the Yalong
YL-l360A industrial robot deburring and grinding system control and application equipment. The industrial robot selection and method of the simulation workstation are
The grinding head installed on the blue plate refers to the Yalong YL-l360A industrial robot deburring and grinding system control and application equipment, and the
workpiece is customized. The ABB industrial robot deburring and
grinding workstation simulation training process includes: creating a workstation, setting up tools, creating smart components, creating tool coordinate systems,
creating trajectories, programming, simulation design, and verification.
2 Task implementation
2.1 Create a workstation
Import the robot: First, create a new simulation workstation in the Robotstudio software. The workstation name is self-named, and then import the
corresponding industrial robot IRB1410. The robot position remains unchanged by default. Create a robot system, modify the system options, check 709-1D
eviceNetMaster/s1ave, select Chinese as the language, and leave the other options unchanged by default, then click Confirm to create the robot system
After the robot system is created, hide the industrial robot IRB1410 to facilitate subsequent workstation operations.
Import workpiece: The workpiece here is customized, and the corresponding workpiece is selected according to the actual situation on site. This article
uses the original workpiece Curvet in Robotstudio software. After importing it into the workstation, according to the reachable range of the robot, just place the
workpiece at a suitable location within the reachable range of the robot, as shown in Figure 1.
Import the grinding rotor tool: First, create a new grinding rotor tool component – rotor – copy (2) and rotor – copy (2) in the so1idworks 3D software. The
rotor – copy (2) is a rotatable grinding rotor. —The copy is the tool body, which is the grinding rotor frame, and is installed on the robot flange, as shown in Figure 2.
2.2 Setting tools
First, move the rotatable grinding rotor and the tool body to the local origin based on point A, and adjust the initial tool angle so that the grinding rotor is
parallel to the x-axis of the geodetic coordinate system, as shown in Figure 3. Set the local origin of the tool body at this time, change the position x, y,: to 0, 0, 0, and change the direction x, y,: to 0, 0, 0.
Figure 3 Tool settings
Create a new frame at point B of the tool body, name it “frame l”, and adjust the direction of frame l so that the axis is perpendicular to the
plane of point B. The specific direction is shown in Figure 4.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
9907-167 Digital regulator control
9907-164 505 Digital microprocessor
9907-149 Overspeed protection module
9771-210 Base module TRICONEX
9200-06-02-10-00 Two-wire sensor
9199-00003 Monitoring module
8602-FT-ST Field terminal
8521-EB-MT Bus interface module
8502-BI-DP Bus interface module
8440-1713/D Governor module
8440-1706-B Synchronizer module
8327-1600 Overspeed safety device
8202-HO-IS 8-channel analog input module
8201-HI-IS 8-channel analog input module
8200-1302 505D digital governor turbine control
8200-226 Servo valve driver
6445-001-K-N High performance microstep driver
6410-024-N-N-N Stepper driver
6410-009-N-N-N Pulse encoder
6189-RDT10C Graphic color display
6186M-17PT High performance industrial display
6181P-17A2MW71DC Integrated display industrial computer
6181P-15TPXP High performance model unit
6176M-17PT Allen-Bradley’s industrial display
05704-A-0122 Analog input module
05701-A-0329 Analog input module
05701-A-0302 Honeywell Single channel control card catalysis
5601-RIO-MCM Remote I/O adapter gateway
5517B Laser interferometer system
5466-316 Programmable controller
5370-CVIM Allen-Bradley vision platform
5302-MBP-MCM4MB+ Protocol driver
5204-DFNT-PDPMV1 Ethernet /IP to PROFIBUS
5136-PFB-VME Profibus interface card
5136-PFB-PCI Communication adapter module
5136-PFB Profibus interface card
04380A Pulse generator
4301-MBP-DFCM Master/slave gateway
4073 TRICONEX Control system
TRICONEX 3720 Digital input module
3625 TRICONEX Digital input module
3100-MCM Communication interface
3096-1000 radiometer Radiant flux
3000RX-8D4A-A-13-MM-ST Power board module
2711P-T12W22D9P Programmable logic controller
2711P-T12C4D8 Man-machine interface
2711P-T10C4D8 PanelView 6 Plus 1000 series terminals.
2711P-T10C4D1 1000 Operator Terminal
2711P-T10C4A9 6 The terminal provides the extension function
2711P-T6M5D Operator Interface Terminal
2711P-T6C5A Operator Interface Terminal
2711P-RDT15C Allen-Bradley display module
Reviews
There are no reviews yet.