Description
UFC921A101 3BHE024855R0101 Электрический фильтр ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.UFC921A101 3BHE024855R0101
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;UFC921A101 3BHE024855R0101Строительная промышленность: коммерческое и промышленное строительство.
user experience
Secondly, if power system engineers are to consider the convenience and speed of using the product in the future, operability needs to be improved while ensuring stability.
This requires a simple self-service system and an operation interface with good visual effects that can meet the needs of users. Some operating habits and other aspects
* cut costs
Furthermore, since there are many nodes in the power system, the same product needs to be deployed on many nodes. Then when the quantity of required products increases,
cost issues will inevitably be involved. How to solve the research and development, construction and installation of products and better reduce operating expenses is also a major issue that ABB needs to consider.
Implementation of communication between Omron vision system and ABB industrial robot
introduction
In modern production processes, vision systems are often used to measure and identify products, and then the results are transmitted to industrial robots for work
through communications . In this process, communication settings are very important. This article analyzes the communication implementation process between the Omron
FH-L550 vision system and ABB industrial robots. The main task is to enable the vision system to provide data detection results for ABB industrial robots, and the industrial robots
perform related operations based on the data results. This article mainly discusses the entire process of visual system communication transmission implementation.
1Ethernet-based communication settings in vision software
The main communication methods of Omron FH-L550 vision system controller are as follows [2], namely: parallel communication, PLCLINK communication, Ethernet
communication, EtherCAT communication, and protocol-free communication. These five communication methods have their own characteristics in the communication process.
In modern equipment, Ethernet communication
(Ethernet communication) is the most common, so this article uses the Ethernet communication method as an example to analyze and explain.
First, select the “Tools” option in the main interface, select the “System Settings” menu (Figure 1), after entering the “System Settings” menu, click the “Startup Settings” option,
and select the “Communication Module” tab (Figure 2 ), after completing the above settings, return to the main interface to save the settings (Figure 3). Finally, select the function
menu to perform system restart settings, and wait for the system to complete the restart before proceeding to the next step.
After the system restarts, click the “System Settings” menu again and select the “Ethernet (No Protocol (UDP))” option (Figure 4). In this option, there will be parameter settings
such as IP address and port. What needs to be noted here are the two IP address parameters. The parameters in “Address Setting 2” need to be filled in. The information that needs
to be filled in includes the IP address of the vision controller, subnet mask, default gateway and DNS server.
In the port number setting of “Input/Output Settings” at the bottom of the menu, set the port number for data input with the sensor controller. Note that the port number should
be the same as the host side, and finally complete the settings and corresponding data saving work.
2ABB industrial robot communication settings
First, configure the WAN port IP address for the ABB industrial robot. Select the control panel in the teach pendant, then select configuration, then select communication in
the theme, click IPSetting, set the IP information and click “Change” to save the IP information.
Next, use the SocketCreate robot command to create a new socket using the streaming protocol TCP/IP and assign it to the corresponding variable (Figure 5). Then
use the SocketConnect command to connect the socket to the remote computer. After the communication connection is completed, it is necessary to send and receive
information from the visual system. To send information, use the SocketSend instruction to send data instructions to the remote computer. After the vision system collects
information and makes judgments, the industrial robot system will receive data from the remote computer. The data reception is completed using the
SocketReceive instruction. This instruction stores the data in the corresponding string variable while receiving the data. Useful information needs to be extracted from the
received data information, which requires StrPart to find the specified character position instruction, extract the data at the specified position from the string, and assign the
result to a new string variable. Finally, when the socket connection is not in use, use SocketCloSe to close it.
UCD224A102 Converter main control board
UCD224A103 Robot base plate
UCD240A101 ABB Axial computer board
UDD406A ABB Power module
UFC092BE01 Axial computer board
UFC718AE101 HIEE300936R0101 ABB Driving power supply
DS3800NFIB Mark IV Board
DS3800NFLA Mark IV Board
DS3800NFLA1C1C Mark IV Board
DS3800NFMC1F Mark IV Board
DS3800NFMC1FGE Regulator Board
DS3800NFMC1F1E Mark IV Board
DS3800NFMC1F1EBOARD Regulator Board
DS3800NFOA1C1D printed circuit board
DS3800NFOA1H Regulator Board
DS3800NGDC printed circuit board
DS3800NGDD Regulator Board
DS3800NGMA printed circuit board
DS3800NGMA1B1A Regulator Board
DS3800NGPA1B1C printed circuit board
DS3800NGRA1F1B Regulator Board
DS3800NGRA1G1B printed circuit board
DS3800NGRA1L1D Regulator Board
DS3800NGRA1L1E printed circuit board
DS3800NGRB1G1F printed circuit board
DS3800NGRC printed circuit board
DS3800NGRC1D1D printed circuit board
DS3800NGRC1F1F printed circuit board
DS3800NGRC1H1F printed circuit board
DS3800NGRC1H1G printed circuit board
UFC719AE01 3BHB003041R0001 Input module
DS3800NGRD1B1A printed circuit board
DS3800NGTA printed circuit board
DS3800NGTA1E1D printed circuit board
DS3800NGTA1F1E printed circuit board
DS3800NGTC1B1C printed circuit board
DS3800NHFA1K1H printed circuit board
DS3800NHVD printed circuit board
DS3800NHVD1 printed circuit board
DS3800NHVD1C printed circuit board
UFC760BE141 3BHE004573R0141 Control panel
UFC760BE142 3BHE004573R0142 ABB Controller master unit
Reviews
There are no reviews yet.