Description
UFC760BE143 3BHE004573R0143 Система возбуждения DCS ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.UFC760BE143 3BHE004573R0143
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;UFC760BE143 3BHE004573R0143Строительная промышленность: коммерческое и промышленное строительство.
Double-decker train uses ABB traction transformer for the first time
Rapid urbanization has brought about problems such as traffic congestion, air pollution and population expansion, forcing railway operators and infrastructure providers
to transport more passengers on already busy rail transit systems. One solution to this outstanding contradiction is to increase the passenger capacity of existing
transportation lines.
On July 22, 2011, ABB , the world”s leading power and automation technology group, recently announced that Bombardier designed and manufactured the world”s
first traction transformer that can be installed on the top of the locomotive for its new generation double-deck EMU train . This train can be used in commuter, regional
and intercity rail transit. The use of double-decker trains is a good way to increase passenger capacity. This type of train has the best car seat ratio planning, and the improved acceleration performance
of the train also effectively shortens the travel time between stations and expands the coverage of train services.
The latest Bombardier double-decker trains have an ABB traction transformer installed on the top. They adopt an extra-wide body and better seat planning. The
number of seats per meter of the body ranges from 5 to 5.8, providing more space for passengers. Compared with similar models currently on the market, Bombardier”s
new trains can carry 35% more passengers.
ABB and Bombardier have a long-standing relationship in the field of traction equipment for regional commuter trains, high-speed trains and railway locomotives.
The traction transformer converts the grid voltage from the power grid above the train into the lower voltage required by the train”s traction system, and delivers it to the train”s
driving equipment, as well as lighting, heating, ventilation systems, on-board LCD displays, information systems and other electrical system .
In order to ensure the continuity of railway transportation and the effectiveness and reliability of the highest level of instant power supply, ABB specially designed
traction transformers for OMNEO trains. Compared with the traction transformer on the single-layer SP AC IUM* EMU train provided by Bombardier for the Francilien line
in the Paris region of France , the power supply capacity of the new transformer is increased by 25%. To save space, the roof-mounted traction system combines the
separate cooling systems for the converter and transformer. This design reduces the number of fans while reducing cost
and equipment weight. In addition, in order to save space and facilitate equipment maintenance and control, the transformer will be installed directly on the top channel
of the vehicle.
Bombardier worked with ABB to complete the design work, and the cabin baffles were installed on the inverter , cooling system and transformer to ensure that these
components fit perfectly into the arc-shaped roof and are difficult to see from the outside after installation. In order to solve the problem of the high center of gravity of the
double-decker train carriage, the transformer has also been designed accordingly to evenly distribute the weight of the equipment.
Swiss ABB will build the largest solar power plant in Northern Europe
Swiss power and automation technology group ABB announced on August 11 that it has built the largest solar power station in Northern Europe at its
low-voltage AC drive plant in Finland . The total investment in the entire solar power station project is approximately 500,000 euros, part of which comes from
the Finnish government. renewable energy investment fund.
ABB Finland”s low-voltage AC transmission plant is located in Helsinki. This solar power station is located on the roof of the factory and has a power
of 181 kilowatts. The solar power generated is mainly used to charge the factory”s forklift truck batteries and reduce the peak load of the factory”s electricity consumption.
Antti Suontausta, Senior Vice President of ABB”s low-voltage AC drives business, said: “This solar power generation system fully demonstrates the
benefits of distributed power generation near power consumption areas. Solar power generation can bring high added value to users, especially for
commercial and industrial applications . For buildings, solar power generation can reduce the building’s peak power load.”
Finland”s sunshine is not very abundant, but this solar power station can take full advantage of the region”s long sunshine hours in summer. It is
expected to generate 160,000 kilowatt hours of electricity per year, which is equivalent to the annual use of 30 local households that do not use electric
heating equipment. power. This solar power will be directly integrated into the factory power grid to charge the forklift trucks in the factory, and the excess
power can also be used by other equipment.
The solar power station uses ABB”s latest string inverters and central inverters, which are designed and produced by ABB”s transmission plant in
Helsinki. This is their first application in Finland. ABB solar inverters are mainly used to convert DC power produced by solar panels into high-quality
AC power and integrate it into the power grid.
UAD155A0111 3BHE029110R0111 ABB
UAD206A101 3BHE019959P201 ABB
UAD206A101 3BHE019958R0101 ABB
3BHE019959P201AEND:C Main control board ABB
3BHE019958R0101 Main control board ABB
UAD206A101 Main control board ABB
UAD206A101 3BHE019958R0101/3BHE019959P201 AEND:C
HIEE300885R1 Main control board ABB
PPC380AE01 HIEE300885R0001 ABB
HIEE300885R0001 Main control board ABB
PPC380AE01 Main control board ABB
HIEE300885R0102 Main control board ABB
PPC380AE02 Main control board ABB
PPC380AE02 HIEE300885R0102 ABB
PPC380AE102 HIEE300885R0102 ABB
HIEE300885R0102 Main control board ABB
PPC380AE102 Main control board ABB
3BHE010751R0101 Main control board ABB
PPC902AE101 Main control board ABB
PPC902AE101 3BHE010751R0101 ABB
PPC902CE101 3BHE028959R0101 ABB
3BHE028959R0101 control module ABB
PPC902CE101 control module ABB
3BHE024577R0101 control module ABB
PPC907BE control module ABB
PPC907BE 3BHE024577R0101 ABB
INNPM12 Transmission module ABB
PM150V08 3BSE009598R1 ABB
3BSE009598R1 processing module ABB
PM150V08 processing module ABB
3BSE011180R1 processing module ABB
PM511V08 3BSE011180R1 ABB
3BSE008358R1 processing module ABB
PM510V16 processing module ABB
PM510V16 3BSE008358R1 ABB
PM511V08 ABB
PM630processing module ABB
PM632 3BSE005831R1 ABB
3BSE005831R1 processing module ABB
PM632 processing module ABB
PM633 processing module ABB
3BSE008062R1 processing module ABB
3BSE008062R1 PM633 ABB
PM645B 3BSE010535R1 ABB
3BSE010535R1 processing module ABB
PM645B processing module ABB
3BDH000364R0002 processing module ABB
PM783F processing module ABB
PM783F 3BDH000364R0002 ABB
PMA323BE HIEE300308R1 ABB
HIEE300308R1 processing module ABB
PMA323BE processing module ABB
3BSE011181R1 processing module ABB
PM511V16 processing module ABB
PM511V16 3BSE011181R1 ABB
1SAP500405R0001 interface ABB
CP405 A0 Industrial touch screenABB
Reviews
There are no reviews yet.