Sale!

UAD155A0111 3BHE029110R0111 Using parameter ABB

Original price was: $1,888.00.Current price is: $1,688.00.

Model:UAD155A0111 3BHE029110R0111

New original warranty for one year

Brand: Honeywell

Contact person: Mr. Lai

WeChat:17750010683

WhatsApp:+86 17750010683

Email: 3221366881@qq.com

Category:

Description

UAD155A0111 3BHE029110R0111 Using parameter ABB
UAD155A0111 3BHE029110R0111 Using parameter ABB
UAD155A0111 3BHE029110R0111 Using parameter ABB Product details:
UAD155A0111 3BHE029110R0111 is an interface communication module from ABB, with product model UAD155A0111 3BHE029110R0111. This module is commonly used in industrial automation systems,
especially in the field of process control. Here are some possible application and product operation areas:
Industrial automation: ThUAD155A0111 3BHE029110R0111 communication module may be used to communicate with other automation equipment, control systems,
or sensors to achieve automation and integration of industrial production lines.
Process control: This module may be used to monitor and control various processes, such as chemical plants, power plants, pharmaceutical plants,
etc. Through communication with other devices, it can achieve data exchange and control instruction transmission.
PLC (Programmable Logic Controller) systemUAD155A0111 3BHE029110R0111 may be integrated into the PLC system for communication with other PLC modules or
external devices, achieving centralized management of the entire control system.
Data collection and monitoring: In the data collection systemUAD155A0111 3BHE029110R0111 can be used to obtain data from various sensors and devices,
and transmit this data to the monitoring system for real-time monitoring and analysis.
Remote monitoring and operation: Through collaborative work with other communication modulesUAD155A0111 3BHE029110R0111 may support remote monitoring and operation,

allowing operators to monitor and control the production process from different locations.

Contact person: Mr. Lai
Mobil:17750010683
WeChat:17750010683
WhatsApp:+86 17750010683

Practical application of ABB industrial information control system 800xA in main shaft hoist control
introduction

The mine hoist is an important transportation equipment for mining enterprises. Its main function is to transport the ore,
personnel or equipment that need to be transported to the destination by the lifting container. Therefore, it plays a very
important role in the mining production process. Usually the mine hoist control system consists of a driving part and a
control part. The working mechanism
of the driving part is: the motor unit drives the mechanical hoisting device, and the frequency converter or other types
of hoisting control systems drive the motor unit: the working mechanism of the control part is: Each component of the
hoist is coordinated and controlled by the
Distributed Control System (DCS). In addition to completing basic process control, it can also integrate intelligent instruments,
intelligent transmission and motor control, and even production management and safety systems into one operation and engineering environment
middle. Therefore, the mine hoist requires a control system with high performance, high reliability, and high integration.

1ABB800xA system and AC800M controller introduction

1.1ABB800xA system introduction

The 800xA system is an industrial information control system launched by ABB. The core of its architecture is
object-oriented (ObjectOriented) technology. Due to the adoption of ABB”s unique Aspect0object concept,
enterprise-level information access, object navigation and access can become standardized and simple.

In order to provide a unified information platform for enterprise managers and technical personnel, the 800xA system
provides a base platform (BasePlatform), which relatively separates the process control part and production control
management and organically combines them together. As shown in Figure 1, the middle part is the basic platform, the upper part is the production control
management part, and the lower part is the process control part. The basic platform provides standard interfaces for
these two parts for data exchange.
1.2 Introduction to ABBAC800M controller and its programming configuration tools

AC800M controller is ABB”s latest controller series, which includes a series of processors from PM851 to PM865.
The AC800M controller itself has a pair of redundant TCP/IP interfaces. It can use the MMs protocol to communicate
with other control devices and 800xA operator stations through Ethernet. It can also use the Modbus protocol and
Point-Point protocol through 2 serial ports. communication. The programming and configuration tool of AC800M is
ControlBuilderM,
referred to as CBM. It supports standard ladder diagram, function block language, text description
language and assembly language to write control logic.

2. Improve the design and implementation of control system functions

2.1 Implementation of elevator operating speed curve

One of the main tasks of the lifting control system is to control the lifting motor to operate according to the speed-position
curve given by the design, so that the lifting container passes through the acceleration section, the uniform speed
section and the deceleration section successively, and stops accurately after completing the specified lifting distance
. somewhere in the wellbore. In order to realize the function of precise position calculation, the designed
elevator control system must be able to perform high-precision position calculation based on the photoelectric encoder
connected to the main shaft of the elevator drum. The
calculation formula is as follows:
In the formula, s is the actual position value of the elevator: sp is the distance corresponding to two consecutive encoder
pulses: AN is the difference between the encoder count value at the reference position and the current position (signed variable):
s0 is the reference position value.

The encoder counts are distributed according to the circumference of the drum. After the number of pulses Np generated
by the encoder rotation is known, the diameter of the circumference of the centerline of the wire rope wrapped around the
drum must be accurately known, so that it can be calculated according to formula (2) The distance sp corresponding to the two encoder pulses:
In the formula, D is the circumferential diameter of the centerline of the wire rope: Np is the number of pulses for one revolution of the known encoder.

But in formula (2), there is a value D that keeps getting smaller as the system runs. This is because the wire rope
used in the elevator is wrapped around the drum, and there is a lining between the wire rope and the drum that increases
friction. This liner will become thinner and thinner as the system continues to wear and tear, causing the diameter of the
circle formed by the center line of
the steel wire rope to gradually become smaller. When the pad wears to a certain extent, it will cause a large position
calculation error. In order to solve the above problems, the two parking position switches in the shaft are used to correct the drum diameter, because the
distance between the two parking positions can be obtained through actual measurement with high accuracy. During the
actual operation, record the encoder count values ​​at the two parking positions respectively. According to formula (3),
the actual correction value of sp can be calculated:
In the formula, sd is the distance between two parking positions: Abs is the absolute value operation: N is the
encoder count value when there are two parking positions.

In this way, the initial sp value is first set according to the given design parameter value, and then the value is
corrected according to the actual operating conditions, which can effectively ensure the accuracy of position
calculation. At the same time, sp” can also be substituted into formula (2), and the D value can be obtained in turn,
which can be used as a basis for judging whether the liner is seriously worn.

After obtaining the elevator position value, the speed control curve can be calculated according to formula (4):

IS200VPWRH1AFA   GE
IS200VATFG1AAAS3  GE
IS200TBCIH1BCE  GE
IS200VCRCH1ABA  GE
IS200TRLYH1BCB  GE
IS200EDCFG1ACB  GE
IS200AEADH4ADA  GE
IS200AEPCH1BAA  GE
IS200DSPXH1DBC  GE
IS200DSPXH1DBD GE
IS200DTAIH1ABB  IS210DTAOH1AA  GE
IS200DTAIH1ABB  GE
IS200DTAIH1ACC  IS210DTAOH1AA GE
IS200DTAIH1ACC   GE
IS200DTAOH1ABA  GE
IS200EGDMH1ADF   GE
IS200EGDMH1AFF  GE
IS200EGPAG1BCA  GE
IS200EPSMG1AEC  GE
IS200EPSMG1AED  GE
IS200EPSMG2ADC   GE
IS200EPSMG2AEC  GE
IS200ERDDH1ABA  GE
IS200ERIOH1AAA  GE
IS200EROCH1ABB  GE
IS200EXHSG3AEC MRP528516   GE
GE interface board IS200HSLAH2ADE MRP646325
IS200ISBBG2AAB  GE
IS220YDOAS1AJA1C10P   GE
IS200JPDDG1AAA   GE
IS200PMCIH1AAA6BA00  GE
IS200PMCIH1ABA  GE
IS200SAMBH1ABA MRP681847  GE
IS200SDIIH1ADB MRP683026  GE
IS200SPIDG1ABA  GE
IS200SRTDH2ACB  GE
IS200STAOH2AAA  GE
IS200STCIH2ADD GE
IS200STCIH6AED  GE
IS200TBAIH1CCC  GE
IS200TBCIH1BBC  GE
IS200TBCIH2CAA MRP604466  GE
IS200TBCIS2CCD   GE
IS200TDBTH6ABC GE
IS200TDBTH6ACD  GE
IS200TPROH1BBB  GE
IS200TPROH1BCB GE
GE  IS230TSPRH1C
IS200TPROS1CBB  GE
IS200TPROS1CBB IS230TSPRH1C GE
IS200TPROS1CBB IS230TSPRH1C/MRP680538
IS200TREAH2AED IS230TNEAH2A  GE
IS200TREAH2AED  GE
IS200TREGH1BEC GE
GE  IS200TRLYH1BGF
IS200TRPAH2AHE Mark VI Printed Circuit Board GE
GE IS200TSVCH1A – Servo I/O Terminal Board
Ge Energy IS200TSVCH1AJE MRP081636 Mark VI Servo Terminal Board
IS200TTURH1CFD IS230TNTRH1C  GE
IS200TTURH1CFD  GE
IS200TVBAH2ACC  IS230TVBAH2A MRP646218

Reviews

There are no reviews yet.

Be the first to review “UAD155A0111 3BHE029110R0111 Using parameter ABB”

Your email address will not be published. Required fields are marked *