Description
hardware flow control. It is an ideal choice in the field of industrial automation.
3.2 Machine learning
As the functionality of distributed computing tools such as Spark MLLib (http://spark.apache.org/mllib) and SparkR (http://spark.apache
.org/docs/latest/index.html) increases, it becomes It is easier to implement distributed and online machine learning models, such as support
vector machines, gradient boosting trees and decision trees for large amounts of data. Test the impact of different machine parameters and process
measurements on overall product quality, from correlation analysis to analysis of variance and chi-square hypothesis testing to help determine the impact of individual
measurements on product quality. This design trains some classification and regression
models that can distinguish parts that pass quality control from parts that do not. The trained models can be used to infer decision rules. According to the highest purity rule,
purity is defined as Nb/N, where N is the number of products that satisfy the rule and Nb is the total number of defective or bad parts that satisfy the rule.
Although these models can identify linear and nonlinear relationships between variables, they do not represent causal relationships. Causality is critical to
determining the true root cause, using Bayesian causal models to infer causality across all data.
3.3 Visualization
A visualization platform for collecting big data is crucial. The main challenge faced by engineers is not having a clear and comprehensive overview of the complete manufacturing
process. Such an overview will help them make decisions and assess their status before any adverse events occur. Descriptive analytics uses tools such as
Tableau (www.tableau.com) and Microsoft BI (https://powerbi.microsoft.com/en-us) to help achieve this. Descriptive analysis includes many views such as
histograms, bivariate plots, and correlation plots. In addition to visual statistical descriptions,
a clear visual interface should be provided for all predictive models. All measurements affecting specific quality parameters can be visualized and the data
on the backend can be filtered by time.
Excitation system ABB module IMFEC11
Excitation system ABB module IMFEC11
Excitation system ABB module IMFCS01
Excitation system ABB module IMFCS01
Excitation system ABB module IMFBS01
Excitation system ABB module IMFBS01
Excitation system ABB module IMFBM01
Excitation system ABB module IMFBM01
Excitation system ABB module IMFAI02
Excitation system ABB module IMFAI02
Excitation system ABB module IMFAI01
Excitation system ABB module IMFAI01
Excitation system ABB module IMDSO15
Excitation system ABB module IMDSO15
Excitation system ABB module IMDSO14
Excitation system ABB module IMDSO14
Excitation system ABB module IMDSO14
Excitation system ABB module IMDSO14
Excitation system ABB module IMDSO05
Excitation system ABB module IMDSO05
Excitation system ABB module IMDSO04
Excitation system ABB module IMDSO04
Excitation system ABB module IMDSO03
Excitation system ABB module IMDSO03
Excitation system ABB module IMDSO02
Excitation system ABB module IMDSO02
Excitation system ABB module IMDSO01
Excitation system ABB module IMDSO01
Excitation system ABB module IMDSM05
Excitation system ABB module IMDSM05
Excitation system ABB module IMDSM04
Excitation system ABB module IMDSM04
Excitation system ABB module IMDSM04
Excitation system ABB module IMDSM04
Excitation system ABB module IMDSM04
Excitation system ABB module IMDSI22-ABX
Excitation system ABB module IMDSI22-ABX
Excitation system ABB module IMDSI22
Excitation system ABB module IMDSI22
Excitation system ABB module IMDSI22
Excitation system ABB module IMDSI22
Excitation system ABB module IMDSI15
Excitation system ABB module IMDSI14
Excitation system ABB module IMDSI14
Excitation system ABB module IMDSI14
Excitation system ABB module IMDSI13
Excitation system ABB module IMDSI13
Excitation system ABB module IMDSI12
Excitation system ABB module IMDSI02
Excitation system ABB module IMDSI02
Excitation system ABB module IMDS014
Excitation system ABB module IMDS014
Excitation system ABB module IMDS004
Excitation system ABB module IMDER02
Excitation system ABB module IMDER01
Excitation system ABB module IMCPM02
Excitation system ABB module IMCPM01
Excitation system ABB module IMCOM04
Excitation system ABB module IMCOM03
Excitation system ABB module IMCKN02
Excitation system ABB module IMCKN01
Excitation system ABB module IMCIS22
Excitation system ABB module IMCIS22
Excitation system ABB module IMCIS22
Excitation system ABB module IMCIS22
Excitation system ABB module IMCIS12
Excitation system ABB module IMCIS02
Excitation system ABB module IMCIS02
Excitation system ABB module IMCIS02
Excitation system ABB module IMBLK01
Excitation system ABB module IMBLK01
Excitation system ABB module IMASO11
Excitation system ABB module IMASO11
Reviews
There are no reviews yet.