Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Email: 3221366881@qq.com
According to reports, ABB”s technical expertise and experience in many industries will be combined with Microsoft”s Azure intelligent cloud system and B2B
engineering capabilities to create greater value for customers. Combined with ABB”s more than 70 million connected devices installed globally and more than
70,000 running control systems, ABB and Microsoft will join forces to create one of the world”s largest IIoT industrial cloud platforms.
It is worth noting that IoT expert Guido Jouret (formerly general manager of Cisco’s IoT department) became the group’s chief digital officer on October 1, 2016.
This marks that ABB is accelerating digital transformation and comprehensively building a new “Internet of Things+” ecosystem. ABB also hopes to obtain higher
profits from this, and has proposed a financial target for 2015-2020 of pre-tax profit growth of 11%-16%.
FANUC
FANUC recently established the IoT platform Fanuc Intelligent Edge Link and Drive (FIELD), which uses NVIDIA artificial intelligence system. FIELD can realize the
connection of machine tools, robots, peripheral equipment and sensors in the automation system and provide advanced data analysis to improve the production quality,
efficiency, flexibility and equipment reliability in the production process – thereby improving the overall efficiency of the equipment ( OEE) and promote the improvement of production profits.
The system can also improve robot productivity through artificial intelligence and bring autonomous learning capabilities to automated factory robots around the
world. FANUC will use a series of GPUs and deep learning software designed and produced by NVIDIA to enable AI artificial intelligence to be used in clouds, data centers
and embedded devices.
When talking about the cooperation with FANUC, NVIDIA co-founder and CEO Jensen Huang said that the era of AI artificial intelligence has officially arrived.
Through the deep learning function of GPU, it will stimulate a
new wave of software learning and machine inference calculations. The most exciting of these is the ability of robots to understand their surroundings and
interact with humans. NVIDIA is very happy to work with FANUC, the global leader in automated factories and robots, to build intelligent machines to benefit the future of mankind.
It is reported that FIELD continues the success of the existing Fanuc ZDT (zero downtime function), which effectively combines Cisco cloud technology,
IoT data collection software and point-to-point security. After connecting the robot through the use of an industrial Ethernet switch, it is then connected to Cisco”s UCS server – the system runs
based on FANUC and Cisco”s ZDT data collection software. Automotive industry users can immediately realize reductions in downtime and cost savings after using the system.
FIELD provides users and application developers with advanced machine learning and artificial intelligence capabilities and brings manufacturing to
new heights of productivity and efficiency. Currently, FANUC has applied these new technologies to robotic bulk picking, production anomaly detection and fault
prediction. Because FIELD combines artificial intelligence and cutting-edge computer technology, distributed learning is possible. The operating data of robots and
equipment are processed in real time on the network,
which also enables more intelligent coordination of production between various equipment, making complex production coordination that was previously difficult to
achieve easily completed.
In fact, many years ago, FANUC began to cooperate with Cisco to carry out the “non-stop” zero downTIme plan. In the plan, FANUC and Cisco will join forces to
build an Internet of Things system that will allow FANUC to supervise
every robot in the factory, predict abnormal conditions of the robots, and send more technicians to repair the robots before problems occur. So far, the program has
tested 2,500 robots, including FANUC”s major customer GM General Motors. According to FANUC, the test program saved customers $38 million.
YASKAWA
After talking so much about the Internet of Things strategy of the industrial robot giant, let’s take a break here at Yaskawa and talk about the past.
Midea and KUKA have officially received their marriage certificates, but you must know that as early as August 2015, Midea announced its
robot strategy and established two joint venture subsidiaries with Japan”s Yaskawa Electric.
The two subsidiaries are respectively for industrial robots and service robots, including Guangdong Yaskawa Midea Industrial Robot Co.
, Ltd. (Midea”s equity accounted for 49%) and Guangdong Midea Yaskawa Service Robot Co., Ltd. (Midea”s equity accounted for 60%).
This shows that as early as 2015, Midea was actually “in love” with Yaskawa, but by 2016, she married Kuka.
Excitation system ABB module BSM0400CN00
Excitation system ABB module BSFC-02C
Excitation system ABB module BRC410
Excitation system ABB module BRC410
Excitation system ABB module BRC400
Excitation system ABB module BRC400
Excitation system ABB module BRC400
Excitation system ABB module BRC3000A
Excitation system ABB module BRC-300
Excitation system ABB module BRC300
Excitation system ABB module BRC300
Excitation system ABB module BRC300
Excitation system ABB module BRC200
Excitation system ABB module BRC-100
Excitation system ABB module BRC-100
Excitation system ABB module BP914S
Excitation system ABB module BP910S
Excitation system ABB module BP901S
Excitation system ABB module BIOC-01
Excitation system ABB module BI934S
Excitation system ABB module BI933S
Excitation system ABB module BI924S
Excitation system ABB module BI923S
Excitation system ABB module BI914S
Excitation system ABB module BI913S
Excitation system ABB module BDD110 HNLP205879R1
Excitation system ABB module BCU-02
Excitation system ABB module BC810K02 3BSE031155R1
Excitation system ABB module BC810K02
Excitation system ABB module BC810K02
Excitation system ABB module BC810K02
Excitation system ABB module BC810K01 3BSE031154R1
Excitation system ABB module BC810K01
Excitation system ABB module BC810
Excitation system ABB module BC25
Excitation system ABB module BB174
Excitation system ABB module Bailey PCM-10
Excitation system ABB module B5EEd HENF105082R4
Excitation system ABB module B5EC HENF105077R1
Excitation system ABB module B3EA HENF315147R1
Excitation system ABB module AX722F
Excitation system ABB module AX721F
Excitation system ABB module AX670 3BSE000566R1
Excitation system ABB module AX670
Excitation system ABB module ATPU-02A 3HNA004440-001
Excitation system ABB module ASFC-01C
Excitation system ABB module ASDI-03 3HNA010255-001
Excitation system ABB module ARC093AV1 HIEE300690R1
Excitation system ABB module ARC093AV1
Excitation system ABB module APSAF03
Excitation system ABB module APIP-05 3HNA018573-001
Excitation system ABB module APBU-44C 64669982
Excitation system ABB module APBU-44C
Excitation system ABB module APBU-44C
Excitation system ABB module AOFC-02
Excitation system ABB module AO930S
Excitation system ABB module AO930N
Excitation system ABB module AO930B
Excitation system ABB module AO920S
Excitation system ABB module AO920N
Excitation system ABB module AO920B
Excitation system ABB module AO910S
Excitation system ABB module AO910S
Excitation system ABB module AO910N
Excitation system ABB module AO910B
Excitation system ABB module AO910
Excitation system ABB module AO895 3BSC690087R1
Excitation system ABB module AO895
Excitation system ABB module AO890
Excitation system ABB module AO890
Reviews
There are no reviews yet.