Description
hardware flow control. It is an ideal choice in the field of industrial automation.
According to reports, ABB”s technical expertise and experience in many industries will be combined with Microsoft”s Azure intelligent cloud system and B2B
engineering capabilities to create greater value for customers. Combined with ABB”s more than 70 million connected devices installed globally and more than
70,000 running control systems, ABB and Microsoft will join forces to create one of the world”s largest IIoT industrial cloud platforms.
It is worth noting that IoT expert Guido Jouret (formerly general manager of Cisco’s IoT department) became the group’s chief digital officer on October 1, 2016.
This marks that ABB is accelerating digital transformation and comprehensively building a new “Internet of Things+” ecosystem. ABB also hopes to obtain higher
profits from this, and has proposed a financial target for 2015-2020 of pre-tax profit growth of 11%-16%.
FANUC
FANUC recently established the IoT platform Fanuc Intelligent Edge Link and Drive (FIELD), which uses NVIDIA artificial intelligence system. FIELD can realize the
connection of machine tools, robots, peripheral equipment and sensors in the automation system and provide advanced data analysis to improve the production quality,
efficiency, flexibility and equipment reliability in the production process – thereby improving the overall efficiency of the equipment ( OEE) and promote the improvement of production profits.
The system can also improve robot productivity through artificial intelligence and bring autonomous learning capabilities to automated factory robots around the
world. FANUC will use a series of GPUs and deep learning software designed and produced by NVIDIA to enable AI artificial intelligence to be used in clouds, data centers
and embedded devices.
When talking about the cooperation with FANUC, NVIDIA co-founder and CEO Jensen Huang said that the era of AI artificial intelligence has officially arrived.
Through the deep learning function of GPU, it will stimulate a
new wave of software learning and machine inference calculations. The most exciting of these is the ability of robots to understand their surroundings and
interact with humans. NVIDIA is very happy to work with FANUC, the global leader in automated factories and robots, to build intelligent machines to benefit the future of mankind.
It is reported that FIELD continues the success of the existing Fanuc ZDT (zero downtime function), which effectively combines Cisco cloud technology,
IoT data collection software and point-to-point security. After connecting the robot through the use of an industrial Ethernet switch, it is then connected to Cisco”s UCS server – the system runs
based on FANUC and Cisco”s ZDT data collection software. Automotive industry users can immediately realize reductions in downtime and cost savings after using the system.
FIELD provides users and application developers with advanced machine learning and artificial intelligence capabilities and brings manufacturing to
new heights of productivity and efficiency. Currently, FANUC has applied these new technologies to robotic bulk picking, production anomaly detection and fault
prediction. Because FIELD combines artificial intelligence and cutting-edge computer technology, distributed learning is possible. The operating data of robots and
equipment are processed in real time on the network,
which also enables more intelligent coordination of production between various equipment, making complex production coordination that was previously difficult to
achieve easily completed.
In fact, many years ago, FANUC began to cooperate with Cisco to carry out the “non-stop” zero downTIme plan. In the plan, FANUC and Cisco will join forces to
build an Internet of Things system that will allow FANUC to supervise
every robot in the factory, predict abnormal conditions of the robots, and send more technicians to repair the robots before problems occur. So far, the program has
tested 2,500 robots, including FANUC”s major customer GM General Motors. According to FANUC, the test program saved customers $38 million.
YASKAWA
After talking so much about the Internet of Things strategy of the industrial robot giant, let’s take a break here at Yaskawa and talk about the past.
Midea and KUKA have officially received their marriage certificates, but you must know that as early as August 2015, Midea announced its
robot strategy and established two joint venture subsidiaries with Japan”s Yaskawa Electric.
The two subsidiaries are respectively for industrial robots and service robots, including Guangdong Yaskawa Midea Industrial Robot Co.
, Ltd. (Midea”s equity accounted for 49%) and Guangdong Midea Yaskawa Service Robot Co., Ltd. (Midea”s equity accounted for 60%).
This shows that as early as 2015, Midea was actually “in love” with Yaskawa, but by 2016, she married Kuka.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
G122-829-001 MOOG servo amplifier
IC660ELB912G GE Genius I/O
IC693APU300K GE High-Speed Counter (HSC) module
IC693APU301 GE Axis Positioning Module
IC693CMM301 GE Genius communication module
IC693CPU331 GE Single slot CPU module
IC693CPU341 GE Single slot CPU module
IC693DNM200 GE DeviceNet Master Module
IC693PWR330G GE High capacity power supply module
IC697MEM717C GE CMOS extended memory
IS200VAICH1DAB GE Mark VI printed circuit board
IS200VCRCH1B GE Mark VI printed circuit board
KX8974c V24 HIEE320606R1 ABB Interface card
MDX61B0015-5A3-4-0T Movidrive Inverter Unit
PP846A 3BSE042238R2 ABB Function key panel
PPC380AE102 HIEE300885R0102 ABB power-supply module
HE700GEN200 GE Genius interface module
T1023-07C HIER466513P111 TRACO POWER power-supply module
T1032-07C HIER466688P111 TRACO POWER power-supply module
T8310 ICS TRIPLEX TMR Expander Processor
T8403 ICS TRIPLEX Trusted TMR 24Vdc Digital Input Module
UNS0007A-P V1 HIEE305098R0001 HIEE410730P201 ABB Ignition plate
IS220PPROH1A GE Mark VI component
VE3008 12P6381X032 KJ2005X1-MQ1 controller module
VME-SSI AVMESSI Encoder module
VMIVME-5565-110000 GE Reflective Memory Node Card
VMIVME7740-841 GE single board computer
XTB750B01 HUCD420038R0001 ABB Interface Module
XVC517AE02 ABB PLC control panel
ZT372a-E GJR2237800R1 HE663909-31828 ABB procontrol-module
369-HI-R-M-0-0-0-0 GE Motor Management Digital Relay
531X305NTBANG1 GE NTB/3TB Terminal Board 531X Series
573-935-202C VIBRO PLC module
567LH-DP24 REOTRON Drive
3708EN TRICONEX Outpout Module
9907-1183 Woodward Digital governor
125760-01 Bently Nevada Data Manager I/O Module
135613-02 Bently Nevada High Temperature Case Expansion Transducer Assembly
CB06561 PRD-B040SSlz-62 KOLLMORGEN Servo driver
CI541V1 3BSE014666R1 ABB rofibus Interface Submodule
DS200SDCIG1ABA GE RST Analog I/O Board
DS200TCQCG1BKG GE RST Overflow Board
DS215TCQAG1BZZ01A GE RST Analog I/O Board
DSMB-01C ABB power panel
DT602 GJR2911200R1 ABB DCS module
DT680E GJR2923100R1 ABB PLC module
EMDR RAYCHEM Control Unit
FSA80 Danaher Servo driver
FTA-544 17-550544-001B HONEYWELL Output Module
HE700GEN200C GE Control interface module
FTA-554 17-550554-001 HONEYWELL Output Module
Reviews
There are no reviews yet.