Description
hardware flow control. It is an ideal choice in the field of industrial automation.
3.2 Machine learning
As the functionality of distributed computing tools such as Spark MLLib (http://spark.apache.org/mllib) and SparkR (http://spark.apache
.org/docs/latest/index.html) increases, it becomes It is easier to implement distributed and online machine learning models, such as support
vector machines, gradient boosting trees and decision trees for large amounts of data. Test the impact of different machine parameters and process
measurements on overall product quality, from correlation analysis to analysis of variance and chi-square hypothesis testing to help determine the impact of individual
measurements on product quality. This design trains some classification and regression
models that can distinguish parts that pass quality control from parts that do not. The trained models can be used to infer decision rules. According to the highest purity rule,
purity is defined as Nb/N, where N is the number of products that satisfy the rule and Nb is the total number of defective or bad parts that satisfy the rule.
Although these models can identify linear and nonlinear relationships between variables, they do not represent causal relationships. Causality is critical to
determining the true root cause, using Bayesian causal models to infer causality across all data.
3.3 Visualization
A visualization platform for collecting big data is crucial. The main challenge faced by engineers is not having a clear and comprehensive overview of the complete manufacturing
process. Such an overview will help them make decisions and assess their status before any adverse events occur. Descriptive analytics uses tools such as
Tableau (www.tableau.com) and Microsoft BI (https://powerbi.microsoft.com/en-us) to help achieve this. Descriptive analysis includes many views such as
histograms, bivariate plots, and correlation plots. In addition to visual statistical descriptions,
a clear visual interface should be provided for all predictive models. All measurements affecting specific quality parameters can be visualized and the data
on the backend can be filtered by time.
Excitation system ABB module HIEE401091R0002 GD9924BE
Excitation system ABB module HIEE400995R0002 UMB015BE02
Excitation system ABB module HIEE400787R1 HI906056-855/22
Excitation system ABB module HIEE400787R1
Excitation system ABB module HIEE400643R1
Excitation system ABB module HIEE400316R1 HIEE410016P1 UDA327AE02
Excitation system ABB module HIEE400106R1 CSA464AE
Excitation system ABB module HIEE400103R1 CSA463AE
Excitation system ABB module HIEE4000109R0001 HIEE400109R1 CSA465AE
Excitation system ABB module HIEE322077
Excitation system ABB module HIEE320639R1 LT8978BV1
Excitation system ABB module HIEE320639R0001
Excitation system ABB module HIEE305120R0002
Excitation system ABB module HIEE305120R0002
Excitation system ABB module HIEE305111R0001
Excitation system ABB module HIEE305098R0001 UNS0007A-P,V1
Excitation system ABB module HIEE305089R1 UNC4674BV1
Excitation system ABB module HIEE305089R1
Excitation system ABB module HIEE305082R0001 UNS0863A-PV1
Excitation system ABB module HIEE305082R0001 UNS0863A-P,V1
Excitation system ABB module HIEE305082R0001 UNS0863A-P
Excitation system ABB module HIEE305082R0001 UNS0862
Excitation system ABB module HIEE305082R0001
Excitation system ABB module HIEE305069R1 UNC4674AV
Excitation system ABB module HIEE305060R1
Excitation system ABB module HIEE300936R0101 UFC718AE101
Excitation system ABB module HIEE300936R0101 UFC718AE01
Excitation system ABB module HIEE300936R0101
Excitation system ABB module HIEE300936R0101
Excitation system ABB module HIEE300927R0101
Excitation system ABB module HIEE300910R1 UFC092BE01
Excitation system ABB module HIEE300910R1
Excitation system ABB module HIEE300910R0001
Excitation system ABB module HIEE300910R0001
Excitation system ABB module HIEE300900R0001 PPC322BE
Excitation system ABB module HIEE300900R0001
Excitation system ABB module HIEE300900R0001
Excitation system ABB module HIEE300900R0001
Excitation system ABB module HIEE300890R0001 UAC383AE01
Excitation system ABB module HIEE300888R0002 UAC389AE02
Excitation system ABB module HIEE300888R0002 UAC389AE02
Excitation system ABB module HIEE300888R0002 UAC389AE02
Excitation system ABB module HIEE300888R0002
Excitation system ABB module HIEE300885R1 PPC380AE01
Excitation system ABB module HIEE300885R0101
Excitation system ABB module HIEE300766R0001
Excitation system ABB module HIEE300766R0001
Excitation system ABB module HIEE300744R1 UAC318AE
Excitation system ABB module HIEE300725R1 UAC317AEV1
Excitation system ABB module HIEE300715R0002
Excitation system ABB module HIEE300698R1 KUC321AE
Excitation system ABB module HIEE300698R0001
Excitation system ABB module HIEE300698R0001
Excitation system ABB module HIEE300697R1 PPC322AEV01 HIEE401447R1
Excitation system ABB module HIEE300690R1 ARC093AV1
Excitation system ABB module HIEE300690R0001
Excitation system ABB module HIEE300661R1 UPC090AE01
Excitation system ABB module HIEE300661R1
Excitation system ABB module HIEE300661R0001 UPC090AE01
Excitation system ABB module HIEE300661R0001
Excitation system ABB module HIEE300043R1 N7-10340-9/77
Excitation system ABB module HIEE300037R1
Excitation system ABB module HIEE300024R4 UAA326A04
Excitation system ABB module HIEE300024R4
Excitation system ABB module HIEE300024R2 UAA326A02
Excitation system ABB module HIEE220620R1 HI905030-322/9
Excitation system ABB module HIEE220295R1 N7-10310-7/6
Excitation system ABB module HIEE220295R0001 NU8976A
Excitation system ABB module HIEE205019R0001 UNS2980C-Z,V1
Excitation system ABB module HIEE205014R1 UNC4673AV1
Reviews
There are no reviews yet.