Description
SDM251-009N6-110/30-2100 Использование параметров ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.SDM251-009N6-110/30-2100
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;SDM251-009N6-110/30-2100Строительная промышленность: коммерческое и промышленное строительство.
Why is the industrial Internet inseparable from industrial control?
ABB Global CEO Ulrich Spiesshofer recently accepted an exclusive interview with a reporter from Caijing in New York. He believes that the global manufacturing industry is
undergoing drastic changes. The era of labor arbitrage is over. Labor costs are no longer the focus of competition. The future of manufacturing lies in In factories that are smaller,
closer to consumers, and more agile. Artificial intelligence ( AI ) is the most important technology shaping the future of manufacturing. Currently, AI technology is mainly used in the
consumer field, but its large-scale application in the industrial field and among enterprises is more critical.
Digital transformation has been a keyword for global manufacturing giants in the past two years, and the industrial Internet is the implementation form of digital transformation.
General Electric (GE), Siemens and ABB are all leaders in this regard . Spiesshofer believes that GE”s industrial Internet only collects data and analyzes but cannot control it.
As the world”s two largest industrial automation suppliers, ABB and Siemens have the ability to control equipment, which is a significant difference from GE.
ABB is headquartered in Zurich, Switzerland. Its history can be traced back to the 1880s. It started from the original electrical manufacturing business and has developed into an international manufacturing
giant including electrical products, robotics and motion control, industrial automation and power grid. In 2017, ABB”s revenue was US$34.3 billion, ranking 341st among the
Fortune 500 companies. Spiesshofer has served as CEO for nearly five years since taking office in September 2013.
Below are the details of the interview.
The era of labor arbitrage is over
Caijing: Is 2018 a good year for the manufacturing industry?
Spiesshofer: From a global perspective, GDP is growing and consumption is also growing. Overall positive.
Caijing: What crucial changes are taking place in the manufacturing industry?
Spiesshofer: The jobs of the future will be different from the jobs of the past. In the Middle Ages, craftsmen moved between villages, taking their tools with them to work where
there was demand; later we invented factories, integrated supply and demand, and invented logistics; later people realized that there was labor arbitrage (Labor Arbitrage, Refers to
the existence of moving industries that have lost technological advantages and technical barriers to areas with low labor prices to increase profits by reducing labor costs), so we place
factories in emerging countries to benefit from labor arbitrage.
Now, with the development of modern automation and robotics, we can break this picture and bring value addition closer to demand. I think the future of manufacturing is
in factories that are smaller, closer to consumers, and more agile. I believe that the global logistics chain will also be reduced in the future because we will produce products closer to consumers.
The era of labor arbitrage shaping the global manufacturing landscape will be over because we can offset this arbitrage.
Recently we opened a new factory in Germany. Due to the adoption of intelligent automation technology, its unit cost is exactly the same as that of the best factories in
China. So I think the local market will be repositioned in the future, and the positioning of competitiveness will also change from just considering costs to focusing more on technology and value.
Caijing: Many people are complaining that automation has caused people to lose their jobs, and artificial intelligence technology has made the complaints louder
. But these new technologies are also creating new jobs. How do you see the relationship between the two?
Spiesshofer: In 1990, one-third of the world”s population lived below the extreme poverty line. Today, only 8% rely on technology. In fact, countries with the
highest robot densities, such as Germany, South Korea, Singapore, and Japan, also have the lowest unemployment rates. Robots combined with educated people can create prosperity, produce more
affordable goods, and lead to economic growth. Government, education and business need to work together to keep up with the changing world.
Clearly, millions of jobs are disappearing, but millions of new ones are being created. Taking our own business as an example, we used to have many
employees doing metal casting and forging work, but now these tasks are automated. But now we have more employees working in the service industry, developing apps, and working with customers.
So I think we should not be afraid of change, but should lead our employees to manage change and promote change. If we succeed, global employment will eventually grow.
ABB LST200 Ultrasonic level transmitter
FBM215/218 P0917XV COMPRESSION TERMINATION ASSEMBLY
DS200DCFBG1BLC GE Power Supply Board
ALLEN BRADLEY 192646 PC BOARD
ALLEN BRADLEY 185558 Driver isolation circuit board
ALLEN BRADLEY 154958 PC BOARD
Rockwell 148540 NODE ADAPTER BOARD
ALLEN BRADLEY 74102-462-53 Ac driver board
Rockwell A-B 1336S-EN6 Ac driver
A-B 1336-L5 Control interface board
TRICONEX 4000098-510 Cable assembly 10 ft
WEIDMULLER 915917/67 Terminal Adapter
146031-01 Bently Nevada Transient Data Interface I/O Module
MTL 8724-CA-PS module power supply carrier
Allen-Bradley 1756-OB16E Discrete output module
1452-25M Prosoft Connector
842E-CM-MIP3BA Encoder
Foxboro P0926JM 8 Position Modular Baseplate Stock
P0922XS Foxboro TSC Power Cable
FOXBORO RH916DD controller
AO920N 3KDE175533L9200 S900 I/O system
FOXBORO RH916XG FBM 201 TERMINAL ASSEMBLY
AO920B 3KDE175532L9200 S900 I/O System
DO930N 3BDS014114 S900 I/O system Digital Output
DO910S 3KDE175321L9100 S900 I/O system
DO910N 3KDE175323L9100 S900 I/O system
PM862K02 3BSE081636R1 AC800M PM862 controller
PM863K01 3BSE088381R1 AC800M PM863 controller
PM866AK01 3BSE076939R1 AC800M PM866/PM866A controller
PM867K02 3BSE081638R1 AC800M PM867 controller
PM864AK02 3BSE018164R1 AC800M PM864A controller
PM851AK01 3BSE066485R1 AC800M PM851/PM851A controller
PM856AK01 3BSE066490R1 AC800M PM856A controller
SA920N 3BDH000600R1 S900 I/O system
SA920B 3BDH000601R1 S900 I/O system
DX910S 3KDE175311L9100 S900 I/O system
DX910N 3KDE175313L9100 S900 I/O System
DX910B 3KDE175312L9100 S900 I/O System
DP910S 3KDE175361L9100 S900 I/O system
DP910N 3KDE175363L9100 S900 I/O system
DP910B 3KDE175362L9100 S900 I/O system
PM858K02 3BSE082896R1 AC800M PM858 controller unit
PM858K01 3BSE082895R1 AC800M PM858 controller unit
PM857K02 3BSE088386R1 AC800M PM857 controller
PM857K01 3BSE088385R1 AC800M PM857 controller
TU921N 3KDE175113L9210 S900 I/O system
TU921S 3KDE175111L9210 S900 I/O system
CI920AB 3BDH000691R1 S900 I/O system communication interface module
CI920AN 3BDH000692R1 S900 I/O system communication interface module
DO910B 3KDE175322L9100 S900 Digital output module of the I/O system
CI920AS 3BDH000690R1 S900 I/O system communication interface module
FOXBORO RH916YY FBM242 Comp Term Assy
1756-EN2T/B ALLEN BRADLEY Communication interface module
NI-9923 781503-01 NI Terminal Block
CDAQ-9185 785064-01 NI Ethernet CompactDAQ Chassis
MTL MTL831B serial-data outputs
Reviews
There are no reviews yet.