Sale!

SCC-C simulation module

Original price was: $1,888.00.Current price is: $1,688.00.

Model:SCC-C

New original warranty for one year

Brand: ABB

Contact person: Mr. Lai

WeChat:17750010683

WhatsApp:+86 17750010683

Email: 3221366881@qq.com

Category:

Description

Product parameters
Model: SCC-C
Brand: ABB
Size: 10cm x 10cm x 30cm
Weight: 1.2KG
Color: White Black
Working voltage: 5V
Working temperature: -10 ℃ to 50 ℃
Communication interface: RS232, RS485, CAN
Product specifications
Support for MODBUS protocol
Support hardware flow control
Using high-speed CMOS devices
Support for data caching
application area
SCC-C is mainly used in the field of industrial automation, such as DCS PLCs, industrial controllers, robots, etc.
SCC-C is mainly used in steel manufacturing, thermal power generation, hydroelectric power generation, glass manufacturing, paper mills, cement factories, petrochemicals
Chemical fiber, pharmaceutical manufacturing, rubber, plastics, ferrous metal food, machine tools, specialized equipment, transportation vehicles, mechanical equipment
Electronic communication equipment, instruments and beverages, tobacco processing, clothing, textiles, leather, wood processing, furniture, printing, etc
Model: SCC-C Brand: ABB Archive Function: Communication Function Product Certification: Qualified
Working voltage: 24V Internal variable: No pattern Type: Vector diagram Applicable range: Industrial type
Number of screens: 4 Imported or not: Yes Customized for processing: No
Alarm function: Product name: Module Input voltage: 24V Rated current: 5A
Special service: including postage. Remarks: one-year warranty. Operation method: remote control
Applicable motor: servo motor system memory: 8MB Display color: 99.9 color gamut
Power voltage: 220V Input method: Current Input Material code: 65218
Communication interface: HDMI interface Working temperature: 60 Material number 26854 Other functions Analog communication
Output frequency: 50HZ Rated voltage: 24V Alarm type: Light alarm
Disconnect capacity: 0.01 Vector graph support: Minimum number of packages supported: 1
Display type: IPS USB interface quantity: 2 interfaces Memory card slot: 2
Panel protection level: 3 Memory expansion capacity: 128MB User script support: supported
Speed response frequency: 1MS Working environment temperature: -40 to 100 Insulation withstand voltage test: Passed
Third party communication products: ABB controllers available for sale in: nationwide
Product Instructions
Please install SCC-C correctly on the device and connect the communication interface cable properly.
Please refer to the user manual for operating SCC-C to ensure proper use.
Product Introduction
SCC-C is a high-performance industrial automation communication module that uses high-speed CMOS devices, supports MODBUS protocol, and supports
hardware flow control. It is an ideal choice in the field of industrial automation.

(5) Perform predictive maintenance, analyze machine operating conditions, determine the main
causes of failures, and predict component failures to avoid unplanned downtime.

Traditional quality improvement programs include Six Sigma, Deming Cycle, Total Quality Management (TQM), and Dorian Scheinin’s
Statistical Engineering (SE) [6]. Methods developed in the 1980s and 1990s are typically applied to small amounts
of data and find univariate relationships between participating factors. The use of the MapReduce paradigm to simplify data processing in
large data sets and its further development have led to the mainstream proliferation of big data analytics [7]. Along with the development of
machine learning technology, the development of big data analytics has provided a series of new tools that can be applied to manufacturing
analysis. These capabilities include the ability to analyze gigabytes of data in batch and streaming modes, the ability to find complex multivariate
nonlinear relationships among many variables, and machine learning algorithms that separate causation from correlation.

Millions of parts are produced on production lines, and data on thousands of process and quality measurements are collected for them, which is
important for improving quality and reducing costs. Design of experiments (DoE), which repeatedly explores thousands of causes through
controlled experiments, is often too time-consuming and costly. Manufacturing experts rely on their domain knowledge to detect key
factors that may affect quality and then run
DoEs based on these factors. Advances in big data analytics and machine learning enable the detection of critical factors that effectively
impact quality and yield. This, combined with domain knowledge, enables rapid detection of root causes of failures. However,
there are some unique data science challenges in manufacturing.

(1) Unequal costs of false alarms and false negatives. When calculating accuracy, it must be recognized that false alarms
and false negatives may have unequal costs. Suppose a false negative is a bad part/instance that was wrongly predicted to
be good. Additionally, assume that a false alarm is a good part that was incorrectly predicted as bad. Assuming further that
the parts produced are safety critical, incorrectly predicting that bad parts are good (false negatives) can put human lives
at risk. Therefore, false negatives can be much more costly than false alarms. This trade-off needs to be considered when
translating business goals into technical goals and candidate evaluation methods.

Contact person: Mr. Lai
Mobil:17750010683
WeChat:17750010683
WhatsApp:+86 17750010683
Email: 3221366881@qq.com

https://www.xmamazon.com

https://www.xmamazon.com

Home

Home

https://www.plcdcs.com/

www.module-plc.com/

https://www.ymgk.com

330103-00-03-10-02-00 | Approach probe | New original
330100-50-05 | Preprocessor sensor | In stock
330100-90-05 | Preprocessor sensor | New original
330100-90-00 | Preprocessor sensor | In stock
3300/16 | Gap dual vibration monitor | In stock
3300/20-12-01-02-01-02 | Dual thrust position monitor | New original
31000-16-10-00-154-00-02 | 31000 close to probe housing | In stock
24765-03-01 | Expansion transducer assembly| New original
24765-02-01 | Enclosure extension transducer assembly | In stock
24765-02-00 | Enclosure extension transducer assembly | New original
24765-01-01 | Vibration monitor | In stock
2300/20-CN | Vibration monitor | New original
2300/20-00-00 | Vibration monitor | In stock
2300/20_KIT-001-00 | Condition monitoring system suite | New original
2300/20_KIT-001-02-00 | Condition monitoring system suite | In stock
2300/20-00 | Vibration monitor | New original
1900/65A-01-01-03-CN-00 | Universal device monitor | In stock
1900/65A-01-00-03-CN-01 | Universal Device monitor | New original
1900/65A-01-00-03-00-01 | Universal device monitor | In stock
1900/65A-00-01-01-CN-00 | Universal device monitor | In stock
1900/65A-00-01-03-00-00 | Universal Device monitor | New original
1900/65A-00-00-01-00-00 | Universal device monitor | In stock
330100-50-05 | Preprocessor sensor | New original
143416-01 | I/O module | In stock
143416-01 | Preprocessor sensor
18745-03 | Preprocessor sensor
177314-02 | Close to system test suite TK-3E
177314-01 | Close to system test suite TK-3E
177313-02-02 | Close to system test suite TK-3E
177313-02-01 | Close to system test suite TK-3E
135613-03-00 | High temperature enclosure expansion transducer assembly
135613-02-00 | High temperature enclosure expansion transducer assembly
177313-01-02 | Access to system test suite
135613-01-00 | High temperature enclosure expansion transducer assembly
2300/20_KIT-001-02-00 | Condition monitoring system suite
135613-01-00 | High temperature enclosure expansion transducer assembly
125840-02 | Ac power input module
126648-01 | External terminal
106M1079-01 | Ac power module

Reviews

There are no reviews yet.

Be the first to review “SCC-C simulation module”

Your email address will not be published. Required fields are marked *