Description
hardware flow control. It is an ideal choice in the field of industrial automation.
The most fundamental reason for distinguishing these two motor types is that the
design of the air gap magnetic field is different. So the following differences arise
The back EMF waveform is different:
BLDC: Approximate trapezoidal wave (ideal state);
PMSM: sine wave (ideal state);
The three-phase current waveforms are different:
BLDC: Approximate square wave or trapezoidal wave (ideal state);
PMSM: sine wave (ideal state);
Differences in control systems:
BLDC: usually includes position controller, speed controller and current (torque) controller;
PMSM: Different control strategies will have different control systems;
Controls are different:
BLDC: 120-degree square wave current, using PWM control;
PMSM: Positive Xuan wave current, controlled by SPWM SVPWM.
However, in actual control, brushless DC can also be controlled by FOC, and permanent magnet
synchronous motors can also be controlled by square waves.
Just like the controllers of electric vehicles, I have disassembled and studied three or four. The interfaces are
all the same, the control chips are different, and of course the control algorithms are also different. Electric vehicles
controlled by sine waves have very low sound when starting and running, and there is no jitter during operation;
but electric vehicles controlled by square waves have very obvious sounds, and the jitter during operation can also
be felt. The judder is due to definite torque ripples.
Motors controlled by square waves have higher power efficiency, because motors controlled by sine waves have a lower effective voltage.
4. Control technology of permanent magnet synchronous motor
Permanent magnet synchronous motors and brushless DC motors can be operated using the same control method.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
DS200TCCBG1B analog I/O expansion card
DS200TCCBG1A extended analog I/O card
DS200TCCAG2B turbine simulation plate
DS200TCCAG2A analog control panel
DS200TCCAG1B I/O analog card
DS200TCCAG1A input/output analog board
DS200TBSAG1A drive sensor card
DS200TBQGG1A Turbine terminal card
DS200TBQEG1B simulation module
DS200TBQDG1ACC Ge extended analog terminal board
DS200TBQDG1A Terminal card
DS200TBQCG1B analog input terminal module
DS200TBQDG1A terminal board RST extension simulation
DS200TBQCG1A RST terminal board
DS200TBQBG1A analog I/O terminal board
DS200TBPXG1A turbine PC board
DS200TBQAG1A Controller module
DS200TBPAG1A circuit board
DS200TBCAG2AAB General Electric analog I/O terminal board
DS200TBCAG2A analog terminal board
DS200TBCAG1A Analog I/O terminal board
DS200SVMAG1 voltage monitoring board
DS200SVAAG1A Shunt isolator card
DS200STCAG1A turbine communication board
DS200STBAG1A relay module
DS200SSRAG1A solid state relay board card
DS200SSHVMG1A High voltage module
DS200SSBCG1A General Electric circuit board
DS200SSBBG1A board GE EX2000
DS200SSBAG1B turbine buffer plate
DS200SPCBG1AAA multi-bridge signal processing board
DS200SNPAH1ABA printed circuit board
DS200SLCCG4REG General Electric communication card
DS200SLCCG4A interface communication card
DS200SLCCG3A Interface Communication SLCC card
DS200SLCCG2A communication card
DS200SLCCG2A LAN communication module
DS200SLCCG1A Electrical communication board
DS200SLCCG1ABA communication control card
Reviews
There are no reviews yet.