Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Double-decker train uses ABB traction transformer for the first time
Rapid urbanization has brought about problems such as traffic congestion, air pollution and population expansion, forcing railway operators and infrastructure providers
to transport more passengers on already busy rail transit systems. One solution to this outstanding contradiction is to increase the passenger capacity of existing
transportation lines.
On July 22, 2011, ABB , the world”s leading power and automation technology group, recently announced that Bombardier designed and manufactured the world”s
first traction transformer that can be installed on the top of the locomotive for its new generation double-deck EMU train . This train can be used in commuter, regional
and intercity rail transit. The use of double-decker trains is a good way to increase passenger capacity. This type of train has the best car seat ratio planning, and the improved acceleration performance
of the train also effectively shortens the travel time between stations and expands the coverage of train services.
The latest Bombardier double-decker trains have an ABB traction transformer installed on the top. They adopt an extra-wide body and better seat planning. The
number of seats per meter of the body ranges from 5 to 5.8, providing more space for passengers. Compared with similar models currently on the market, Bombardier”s
new trains can carry 35% more passengers.
ABB and Bombardier have a long-standing relationship in the field of traction equipment for regional commuter trains, high-speed trains and railway locomotives.
The traction transformer converts the grid voltage from the power grid above the train into the lower voltage required by the train”s traction system, and delivers it to the train”s
driving equipment, as well as lighting, heating, ventilation systems, on-board LCD displays, information systems and other electrical system .
In order to ensure the continuity of railway transportation and the effectiveness and reliability of the highest level of instant power supply, ABB specially designed
traction transformers for OMNEO trains. Compared with the traction transformer on the single-layer SP AC IUM* EMU train provided by Bombardier for the Francilien line
in the Paris region of France , the power supply capacity of the new transformer is increased by 25%. To save space, the roof-mounted traction system combines the
separate cooling systems for the converter and transformer. This design reduces the number of fans while reducing cost
and equipment weight. In addition, in order to save space and facilitate equipment maintenance and control, the transformer will be installed directly on the top channel
of the vehicle.
Bombardier worked with ABB to complete the design work, and the cabin baffles were installed on the inverter , cooling system and transformer to ensure that these
components fit perfectly into the arc-shaped roof and are difficult to see from the outside after installation. In order to solve the problem of the high center of gravity of the
double-decker train carriage, the transformer has also been designed accordingly to evenly distribute the weight of the equipment.
Swiss ABB will build the largest solar power plant in Northern Europe
Swiss power and automation technology group ABB announced on August 11 that it has built the largest solar power station in Northern Europe at its
low-voltage AC drive plant in Finland . The total investment in the entire solar power station project is approximately 500,000 euros, part of which comes from
the Finnish government. renewable energy investment fund.
ABB Finland”s low-voltage AC transmission plant is located in Helsinki. This solar power station is located on the roof of the factory and has a power
of 181 kilowatts. The solar power generated is mainly used to charge the factory”s forklift truck batteries and reduce the peak load of the factory”s electricity consumption.
Antti Suontausta, Senior Vice President of ABB”s low-voltage AC drives business, said: “This solar power generation system fully demonstrates the
benefits of distributed power generation near power consumption areas. Solar power generation can bring high added value to users, especially for
commercial and industrial applications . For buildings, solar power generation can reduce the building’s peak power load.”
Finland”s sunshine is not very abundant, but this solar power station can take full advantage of the region”s long sunshine hours in summer. It is
expected to generate 160,000 kilowatt hours of electricity per year, which is equivalent to the annual use of 30 local households that do not use electric
heating equipment. power. This solar power will be directly integrated into the factory power grid to charge the forklift trucks in the factory, and the excess
power can also be used by other equipment.
The solar power station uses ABB”s latest string inverters and central inverters, which are designed and produced by ABB”s transmission plant in
Helsinki. This is their first application in Finland. ABB solar inverters are mainly used to convert DC power produced by solar panels into high-quality
AC power and integrate it into the power grid.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
IC754VGI06MTD GE QuickPanel View Operator terminal
IC697PWR710H GE 90-70 Series 55 Watt Power Supply Module
IC697CHS770 GE rack
IC695PBM300 GE RX3i PROFIBUS Master module
IC695NIU001 GE Ethernet Network Interface Unit
IC695CRU320-EN GE RX31 CMX/RMX modules
IC695CPE305 GE RX3i PACSystems central processing unit
IC693MDL753 GE Discrete output module
IC693MDL730LT GE Output module
IC693MDL940L GE relay output module
IC693MDL645 GE Programmable Logic Controllers
IC693CPU363 GE Series 90-30 Processor module
IC693APU302 GE Axis Positioning Module
IC693ALG390 GE 2-Channel Analog Voltage Output module
IC693ALG222 GE 16-Channel Analog Voltage Input module
IC676PBI016 GE VersaMax IP Input Block
IC200PWR102 GE Power supply module
IC200PBI001 GE VersaMax Profibus Network Interface Module
IC670MDL640 GE 16-Point discrete input module
IC200MDL940K GE 16-Point relay output module
IC200MDL240K GE VersaMax AC Input Module
IC200CPUE05 GE VersaMax CPUE05 with Ethernet Interfaces
IC200CPU005 GE CPU module
IC200ALG620 GE 4-channel Resistance Temperature Detector (RTD) input module
IC200ALG264H GE Analog Input Module
IC200ALG263D GE Analog Input Module
IC200ALG260 GE VersaMax analog input module
F650-N-F-L-F-2-G-1-HI-P-6E GE Multilin Feeder Protection & Bay Controller
DS200NATOG2A GE Voltage Feedback Scaling Board
04380A Beijer Electronics E300 Display Control Panel
469-P5-HI-A20-E SR469-CASE GE SR 469 Motor Management Relay line
04220FL11232A GE RXI CONTROLLER
XS321A-E GJR2252900R0001 ABB Communication module
UNS0119A-P-V101 ABB Programmable controller
UGTMEM-01SB47SR ABB DC Motor, w/tach, 22.5V
UAD142A01-3BHE012551R0001 ABB AC 800PEC Combi IO
SPDSI22 ABB DI Module. 16 CH, Universal, 32 Jumpers
SPASO11 ABB AO Module, 14 CH, Supports 4-20mA, 1-5V
SDCS-PIN-4 ABB POWER INTERFACE BOARD
SAFT-112-POW ABB PC BOARD
RMIO-01C ABB CONTROL BOARD
REX521GHHPSH06G ABB PROTECTION UNIT
REF615E-G ABB FEEDER PROTECTION AND CONTROL RELAY
REF615D ABB Feeder protection and control
REF615A_1G-HAFNAEFCBGC1BQK11G ABB FEEDER PROTECTION AND CONTROL RELAY
PFTL101A-1.0KN 3BSE004166R1 ABB Load cell
INNIS21 ABB Network Interface Module
NINT-68 ABB Interface module
LTC391AE01 HIEE401782R0001 ABB Interface module
IMDSI14 ABB Digital Slave Input Module
FPBA-01 ABB PROFIBUS DP adapter module
DSQC345B ABB RECTIFIER UNIT
DSDP140B-57160001-ACX ABB Counter Board
CI502 1SAP220700R0001 ABB Bus-Module
A5E36717788 ABB Frequency converter IGD3 840A drive board Trigger board
129740-002 ABB On-line main board module
3HAC040658-001 ABB Motor unit MU400
3HAC16831-1 ABB Battery pack
Reviews
There are no reviews yet.