Description
SA920N Система возбуждения DCS ABB
CC – Link и другие. Каждый слот IO может быть выбран автономно в соответствии с потребностями клиента, а один модуль поддерживает до 16 каналов.
Технологии основаны на инновацияхSA920N Предоставление клиентам высококачественных и надежных продуктов всегда было постоянным стремлением к нулю.
Давайте посмотрим на его инновации и различия с предшественниками: с жидкокристаллическим дисплеем, вы можете увидеть параметры связи, состояние канала IO,
информацию о версии модуля и так далее; SA920N Отладка и обслуживание более интуитивно понятны; ABS огнестойкая пластиковая оболочка, небольшой размер,
легкий вес, с использованием совершенно новой пряжки монтажной карты, установка более прочная и надежная.
3.2 Machine learning
As the functionality of distributed computing tools such as Spark MLLib (http://spark.apache.org/mllib) and SparkR (http://spark.apache
.org/docs/latest/index.html) increases, it becomes It is easier to implement distributed and online machine learning models, such as support
vector machines, gradient boosting trees and decision trees for large amounts of data. Test the impact of different machine parameters and process
measurements on overall product quality, from correlation analysis to analysis of variance and chi-square hypothesis testing to help determine the impact of individual
measurements on product quality. This design trains some classification and regression
models that can distinguish parts that pass quality control from parts that do not. The trained models can be used to infer decision rules. According to the highest purity rule,
purity is defined as Nb/N, where N is the number of products that satisfy the rule and Nb is the total number of defective or bad parts that satisfy the rule.
Although these models can identify linear and nonlinear relationships between variables, they do not represent causal relationships. Causality is critical to
determining the true root cause, using Bayesian causal models to infer causality across all data.
3.3 Visualization
A visualization platform for collecting big data is crucial. The main challenge faced by engineers is not having a clear and comprehensive overview of the complete manufacturing
process. Such an overview will help them make decisions and assess their status before any adverse events occur. Descriptive analytics uses tools such as
Tableau (www.tableau.com) and Microsoft BI (https://powerbi.microsoft.com/en-us) to help achieve this. Descriptive analysis includes many views such as
histograms, bivariate plots, and correlation plots. In addition to visual statistical descriptions,
a clear visual interface should be provided for all predictive models. All measurements affecting specific quality parameters can be visualized and the data
on the backend can be filtered by time.
Excitation system ABB module ITCTU05
Excitation system ABB module ITCTU04
Excitation system ABB module ITCTU03/11
Excitation system ABB module ITCTU03
Excitation system ABB module IT94-3 HESG440310R2 HESG112699/B
Excitation system ABB module IPSYS01
Excitation system ABB module IPSYS01
Excitation system ABB module IPSYS01
Excitation system ABB module IPS21-35AD
Excitation system ABB module IPMON01
Excitation system ABB module IPMON01
Excitation system ABB module IPFLD48
Excitation system ABB module IPFLD24
Excitation system ABB module IPFLD125
Excitation system ABB module IPFLD01
Excitation system ABB module IPFCH01
Excitation system ABB module IPFAN14
Excitation system ABB module IPFAN13
Excitation system ABB module IPFAN12
Excitation system ABB module IPFAN11
Excitation system ABB module IPESW11
Excitation system ABB module IPECB13
Excitation system ABB module IPECB11
Excitation system ABB module IPCHS02
Excitation system ABB module IPCHS01
Excitation system ABB module IPBLK01
Excitation system ABB module IPBLC01
Excitation system ABB module INTKM01
Excitation system ABB module INSPM01
Excitation system ABB module INSOE01
Excitation system ABB module INSIM01
Excitation system ABB module INSEM11
Excitation system ABB module INSEM01
Excitation system ABB module INSCS01
Excitation system ABB module INPTM01
Excitation system ABB module INPPT01
Excitation system ABB module INPCT01
Excitation system ABB module INPCI02
Excitation system ABB module INPCI01
Excitation system ABB module INPBS01
Excitation system ABB module INNTP01
Excitation system ABB module INNPM22
Excitation system ABB module INNPM22
Excitation system ABB module INNPM22
Excitation system ABB module INNPM22
Excitation system ABB module INNPM12
Excitation system ABB module INNPM12
Excitation system ABB module INNPM12
Excitation system ABB module INNPM11
Excitation system ABB module INNPM01
Excitation system ABB module INNIS21
Excitation system ABB module INNIS21
Excitation system ABB module INNIS21
Excitation system ABB module INNIS11
Excitation system ABB module INNIS11
Excitation system ABB module INNIS11
Excitation system ABB module INNIS01
Excitation system ABB module INNIS01
Excitation system ABB module INNIS01
Excitation system ABB module INLIM03
Excitation system ABB module INLIM02
Excitation system ABB module INIT03
Excitation system ABB module INIT03
Excitation system ABB module INIPT02
Excitation system ABB module INIPT01
Excitation system ABB module INIIT14
Reviews
There are no reviews yet.