Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Distinguished according to whether there is a position sensor, first of all, it is divided into sensing
and non-sensing. That is, whether Hall or other similar position sensors are used to sense the
position angle of the stator and rotor. In air pump applications, many use non-inductive control.
The excellent algorithm of through-hole is that after the motor is running, it detects the changes in
phase current to switch the phase current. In some heavy-duty or precise control applications,
sensory methods are used.
According to the three-phase power supply of the inverter, it can be divided into square wave control
and sine wave control. The square wave control strategy is simple, and the control process is direct
and effective. It adopts a six-step commutation strategy. The CPU modulates the PWM to drive the
power switch tube to generate a three-phase power supply that can run the motor. The control strategy
of sine wave is relatively complex, but the control effect is much better.
In sine wave control, there are two main control strategies.
One is direct torque control DTC Baidu Encyclopedia. The method is to calculate the estimated values
of motor flux and torque based on the measured motor voltage and current. After controlling the torque,
the motor speed can also be controlled. Direct torque control is a patent of the European ABB company. .
The second is, space vector control FOC Baidu Encyclopedia. Its essence is to equate an AC motor to a DC
motor, and independently control the speed and magnetic field components. By controlling the rotor flux linkage,
and then decomposing the stator current, the two components of torque and magnetic field are obtained. After
coordinate transformation, the normal motor is realized. handover or decoupling control.
During sine wave control, there are many derived more sophisticated control strategies, such as feedforward
control, maximum torque control, field weakening control, etc.
In the process of controlling the motor, there are multiple feedback control loops. When controlling the output
of the motor, there is a current loop; on this basis, there is a control loop that controls the speed; when a servo
motor is used, there is a position loop control.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
PPE091A101 3BHE044481R0101 ABB
PPE091A101 3BHE044481R0101 3BHE044477P3REVA
HIEE400235R1 Control board ABB
HIEE300016R2 Control board ABB
PPA322B Control board ABB
PPA322B HIEE400235R1 ABB
PPA322B HIEE300016R2 ABB
PPA322B HIEE300016R2 HIEE400235R1
3HNA023093-001 Robot spare parts
3HNA000512-001 Robot spare parts
3HNA024871-001 Robot spare parts
ACU-01B Spare parts for spraying robot
ACU-01B 3HNA024871-001 ABB
3BSE018134R1 controller ABB
CI855-1 controller ABB
3BSE018144R1 controller ABB
CI857K01 controller ABB
3BSE018137R1 Main control board
CI858-1 Main control boardABB
3BSE018135R1 controller ABB
CI858K01 controller ABB
3BSE048845R2 controller ABB
CI868K01-eA controller ABB
ABB 3BSE050198R1 controller
ABB PM866K01 controller
3BSE022366R1 controller ABB
CI801 controller ABB
3BSE022162R1 Main control board
CI535V30 Main control board
3BSE012545R1 Main control board ABB
CI546 Main control board ABB
ABB 3BSE014666R1 Main control board
ABB CI541V1 Main control board
3BSE010700R1 Main control board
CI534V02 Main control board
3BHE039203R0101 I/O module ABB
CI532V05 I/O module ABB
3BSE018283R1 I/O module ABB
CI522A I/O module ABB
ABB 3BSE012869R1 Main control board
ABB CI520V1 Main control board
3BSE030220R1 controller ABB
CI854AK01 controller ABB
ABB controller 3BHE042816R0101
3BHE032025R1101 controller ABB
PCD235B1101 controller ABB
3BHE022293R010 controller ABB
PCD232A controller ABB
Reviews
There are no reviews yet.