Description
hardware flow control. It is an ideal choice in the field of industrial automation.
3.2 Machine learning
As the functionality of distributed computing tools such as Spark MLLib (http://spark.apache.org/mllib) and SparkR (http://spark.apache
.org/docs/latest/index.html) increases, it becomes It is easier to implement distributed and online machine learning models, such as support
vector machines, gradient boosting trees and decision trees for large amounts of data. Test the impact of different machine parameters and process
measurements on overall product quality, from correlation analysis to analysis of variance and chi-square hypothesis testing to help determine the impact of individual
measurements on product quality. This design trains some classification and regression
models that can distinguish parts that pass quality control from parts that do not. The trained models can be used to infer decision rules. According to the highest purity rule,
purity is defined as Nb/N, where N is the number of products that satisfy the rule and Nb is the total number of defective or bad parts that satisfy the rule.
Although these models can identify linear and nonlinear relationships between variables, they do not represent causal relationships. Causality is critical to
determining the true root cause, using Bayesian causal models to infer causality across all data.
3.3 Visualization
A visualization platform for collecting big data is crucial. The main challenge faced by engineers is not having a clear and comprehensive overview of the complete manufacturing
process. Such an overview will help them make decisions and assess their status before any adverse events occur. Descriptive analytics uses tools such as
Tableau (www.tableau.com) and Microsoft BI (https://powerbi.microsoft.com/en-us) to help achieve this. Descriptive analysis includes many views such as
histograms, bivariate plots, and correlation plots. In addition to visual statistical descriptions,
a clear visual interface should be provided for all predictive models. All measurements affecting specific quality parameters can be visualized and the data
on the backend can be filtered by time.
IS220PDOAH1B Control card piece
IS220PDOAH1A
IS220PDIOH1B I/O communication modules
IS220PDIOH1A Communication card
IS220PDIIH1B Control card piece
IS220PDIIH1A Single-mode optical fiber module
IS220PDIAH1B /O module
IS221YDOAS1A Thermal resistance input module
IS220YDOAS1A Communication card piece
IS220YDIAS1A Communication interface module
IS221YAICS1A Positioning module
IS220YAICS1A Switch power supply
IS220YVIBS1A I/O terminal board
IS220PVIBH1A 8 channel digital input
IS220PAICH1A nalog output module
IS220PAICH2A 8 channel digital input
IS220PAOCH1A GE Analog output module
IS220PDIAH1A Discrete input module
IS220PDIAH1B Input module
IS220PDIIH1B Interface module
IS220PDOAH1A Controller master unit
IS220PPDAH1B System spare parts Function Description
IS220PPRFH1A features Drive unit
IS220PPRFH1B Diagnosis System board card
IS220PRTDH1A Processor board operation
IS220PPROS1B Input control panel
IS220PRTDH1BC Pulse amplifying panel IS220PRTDH1A
IS220PSVOH1B Redundant controller
IS220UCSAH1A PLC control system
IS220YDIAS1A Servo drive module
DS200UDSAG1ADE Analog input module
DS200TCTGG1AFF Analog output circuit board
DS200TCRAG1ACC Network communication card
DS200TCQCG1BKG Robot axis calculation board
DS200TCQCG1BGF Servo servo module
DS200TCQAG1BHF DCS card module
DS200TCPDG2BEC Serial port measuring board
DS200TCPDG1BEC Communication board
DS200TCEBG1ACE Digital output board
DS200TCPDG2BEC Analog quantity module
DS200TCPDG1BEC Pulse input submodule
DS200TCEBG1ACE DCS spare parts
DS200TCEAG1BNE Frequency converter accessories
DS200TCEAG1ACB Power connection board
DS200TCCAG1BAA Adapter module
DS200TBQDG1AFF Frequency converter communication card
DS200TBQCG1AAA Ventilation terminal board
DS200SLCCG1AFG Programmable control module
DS200SLCCG1AEE Digital input module
DS200SLCCG1ACC Ethernet communication card
DS200SIOBH1ACA Robot power supply panel
Reviews
There are no reviews yet.