Description
hardware flow control. It is an ideal choice in the field of industrial automation.
In the Internet of Things era, look at the IOT strategic deployment of the “four major families” of industrial robots
When we talk about Industry 4.0 or smart manufacturing, we cannot help but mention the “four major families” of robots – KUKA, ABB, FANUC, and Yaskawa,
because as the industrial robot companies with the highest level of intelligence at present, they are in the industry They have important influence. In the era of the
Internet of Things, what are these four major families doing?
As a relatively mature product, industrial robots are difficult to judge from the perspective of ordinary users. Especially in today”s era, it is impossible to create a
generational gap through technology.
Just like when someone asks about the advantages and disadvantages of the car-making technologies of Mercedes-Benz and BMW, all I can say is, “It doesn”t matter
if you ride in a Mercedes-Benz or drive a BMW.” Comparing industrial robots to car-making, most of the key technologies used in car-making must be shared by Mercedes-Benz
and BMW. The differences in other “marketing technologies” will not affect the technological competition pattern.
So what will industrial robot manufacturers mainly rely on to widen the gap in the future? There is only one answer, the Internet of Things strategy. Without realizing it,
KUKA, ABB, FANUC, and Yaskawa, the four major industrial robot giants, have already been stationed in the field of Internet of Things and are ready to go.
KUKA(Midea)
On December 30, 2016, Midea Group’s tender offer for the shares of Germany’s KUKA Group (KUKA), the world’s leading provider of intelligent automation solutions,
through MECCA InternaTIonal (BVI) Limited, has received approval from all relevant regulatory authorities.
At the annual meeting of Midea Group on January 12, 2017, Fang Hongbo, Chairman of Midea Group, emphasized the industrial significance of Midea’s acquisition
of KUKA: In the future, Midea will build a second industrial segment besides the home appliance industry, namely the robotics and industrial automation industry segment. This is The new growth point of beauty.
The annual meeting invited KUKA CEO TIll Reuter, who has just entered the Midea system, to give a speech. When explaining the core strategic goals for the future,
Reuter mentioned the two concepts of “intelligent machines” and “digital areas”, which are the two concepts that run through the Internet of Things technology in the company”s business:
Intelligent machines: Among the industrial robots manufactured by KUKA, they are equivalent to advanced robots with both autonomy and mobility. Soon a large number
of industrial robots will “step out of the work cage that is isolated from humans” and begin to work closely with humans, further improving their flexibility. Reuter said that as
industrial robots continue to develop, smart machines with better autonomy and mobility will emerge.
Digital area: It is a solution that combines the knowledge related to production processes of various industries that KUKA has cultivated in the past with the
most cutting-edge IT. Reuter said: “We are familiar with the production processes of products such as cars and aircraft. We want to connect our technical experience with IT to provide
customers with intelligent systems.” Reuter said that by optimizing intelligent systems, that is, complex systems based on big data analysis, reducing downtime
and predictive maintenance of various production systems, new business models can be created and a highly integrated value chain can be built.
According to IFR data, in the field of automobile manufacturing, KUKA robots have the largest market share in the world. We might as well start with the automotive industry
and show you how KUKA uses the “Internet of Things box” to construct the Jeep Wrangler”s body-in-white workshop into an IIoT (Industrial Internet of Things) factory.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
3101 TRICONEX Main Processor Module
TB850 3BSC950193R1 ABB CEX-Bus Terminator
UR6CH GE Digital Input Output I/O Module
MVME2434 MOTOROLA VME Processor Module
IS220PRTDH1BC 336A5026ADP13 GE Resistance equipment input
CC-TAID01 HONEYWELL Analog Input Module
CC-TDOB01 51308371-175 HONEYWELL Digital Output Module
CC-TAIM01 HONEYWELL Terminal base
CC-PAIM01 HONEYWELL Low Level Analog Input Module
XVS-430-10MPI-1-10 EATON Touch panel
TC512V1 3BSE018059R1 ABB TC512V1 RS485 Twisted pair Modem
DSDI146 3BSE007949R1 ABB Analog Inp. Unit 31 ch. Pt100
DSDP170 57160001-ADF ABB Pulse Counting Board
S21260-SRS DANAHER SERVO DRIVER INPUT 240/240V
51403645-100 SBHM HONEYWELL I/O Card
LC-608 ABB PLC module
51305072-200 CLCN-A HONEYWELL I/O Card
51305072-300 CLCN-B HONEYWELL I/O CARD
51306673-100 EPNI HONEYWELL Enhanced Process Network Interface Board
4301-MBP-DFCM PROSOFT
51401583-100 EPNI HONEYWELL Enhanced Process Network Interface Board
810-800082-043 LAM Rev A VME Breakout Board
GPIB-140A 186135H-01L NI Fiber Optic GPIB Extender
GPIB-140A 186135F-31 NI Fiber Optic GPIB Extender
CC-PDOB01 HONEYWELL Digital Output 24V Module
CC-PDIL01 HONEYWELL Digital Input Module
CC-PCF901 HONEYWELL Control Firewall Module
CC-PAIX02 51405038-475 HONEYWELL High Level Analog Input Module
PFS140 RULLM 9K 3BSE00653R1 ABB Roll Supply Unit
XO08R2 1SBP260109R1001 ABB Relay Output Extension Module
PR9268/202-100 EPRO Shaft vibration sensor
IC695CRU320 GE CPU module
SC540 3BSE006096R1 Submodule Carrier incl. local CPU
A3120/022-000 CSI3120 EMERSON Two-channel bearing vibration monitor
T8403CX ICS TRIPLEX Digital Input Module
T8431 ICS TRIPLEX Trusted TMR 24Vdc Analogue Input Module
IC693DNM200-BD GE Series 90-30 components
IC693CPU374 GE single-slot CPU module
IC693CPU350-BC GE Single slot CPU module
GFD563A101 3BHE046836R0101 ABB Excitation device control unit
Reviews
There are no reviews yet.