Description
hardware flow control. It is an ideal choice in the field of industrial automation.
(1) Use STEP7V5.2 configuration software and enter Hardware Configure to complete S7-300 PLC hardware configuration;
(2) Select S7-315-2DP as the main station system, import the GSD (device database) file of NPBA-12 into the STEP7 programming environment, and configure the software
to configure NPBA-12 with S7-315-2DP as the main station. DP online, and select the PPO type to use. This design uses PPO4 to set the site network address. In the Profibus
structure of the variable frequency drive device, ABB frequency converters use the Profibus-DP communication module (NPBA-12) for data transmission, which is
mainly periodic: the host reads the input information from the slave station and sends the output information back to the slave station. ,
so it is necessary to call two system function blocks SFC14 and SFC15 in the PLC main program to read and write these data to achieve communication control to
the frequency converter;
(3) Create a data block in the main PLC program for data communication with the frequency converter; establish a variable table for observing the real-time
communication effect.
4 Inverter operation settings
After the frequency converter and PLC are connected to a network using Profibus-DP fieldbus, in addition to programming in the PLC automation system,
appropriate parameter settings must also be performed on each frequency converter.
After the communication cable is connected, start the inverter and complete the setting of the inverter communication parameters.
4.1 Basic settings
(1) 51.01—Module type, this parameter displays the module model detected by the transmission device. Its parameter value cannot be adjusted by the
user. If this parameter is not defined, communication between the module and the drive cannot be established.
(2) 51.02—This parameter selects the communication protocol, “0” selects the Profibus-DP communication protocol.
(3) 51.03—This parameter is Profibu
The PPO type selected by s connection, “3” is PPO4, but the PPO type on the inverter should be consistent with the PPO type configured on the PLC.
(4) 51.04—This parameter is used to define the device address number, that is, the site address of the frequency converter. Each device on the Profibus
connection must have a separate address. In this design, the two frequency converters are stations 2 and 3 respectively. [1]
4.2 Connection of process parameters
The process parameter interconnection completes the definition and connection of the corresponding parameters of the NPBA-12 dual-port RAM
connector and the frequency converter, including the connection from the master station (PLC) to the frequency converter and the connection from the frequency
converter to the master station (PLC). Set the following connection parameters on the frequency converter.
(1) PZD value sent from PLC to transmission inverter
PZD1—control word, such as start enable, stop, emergency stop and other control commands of the frequency converter;
PZD2—frequency setting value of the inverter.
(2) PZD value sent from the transmission inverter to the PLC
PZD1—status word, such as alarm, fault and other inverter operating status;
PZD2—actual speed value, current actual value, etc. of the frequency converter.
5 Conclusion
After the inverter control system adopts the Profibus-DP fieldbus control mode, the entire system not only has strong reliability and is easy to operate, but also can
be flexibly modified according to process needs. After this system was applied in Jigang Baode Color Plate Co., Ltd., it has been running well and has provided a successful
example for the future automation equipment (network communication of different manufacturers) of the head office.
New technology from Swiss ABB Group: Complete car charging in 15 seconds
This technology can charge a car in 15 seconds
The Swiss ABB Group has developed a new electric bus technology that can complete vehicle charging in 15 seconds . No other company”s battery technology can achieve this performance.
ABB has developed a technology called “Flash Charging” that allows an electric bus with 135 passengers to charge at charging points along the route. The charging point has a
charging power of 400 kilowatts and is located above the vehicle. The charging point is connected to a moving arm controlled by a laser and can charge the car battery in 15 seconds. Its
minimal design will help protect the urban environment and surrounding landscape.
The idea behind this design is to give the electric bus enough power to travel to the next charging station after one charge. The end of the line will allow for long periods of full charging
, with the car able to travel longer distances on a full charge. In addition to faster charging times, the system uses a carbon-emission-free solution called
TOSA to obtain electricity from clean hydroelectric power stations.
ABB initially plans to use this technology between Geneva Airport and the Palexpo International Convention and Exhibition Center. If the test is successful
, it will be deployed to public transportation systems. This is more cost effective and environmentally friendly.
ABB Executive Chief Technology Officer Claes Rytoft said: “With flash charging, we can trial a new generation of electric buses for large-scale transportation
in cities. This project will provide greater flexibility, cost-effectiveness and flexibility.” Paving the way for a lower public transport system while reducing pollution and noise.”
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
MC-TDOD63 HONEYWELL 51309154-275 MU-TDOD63 Digital Output 31-200 Vdc Solid-State
MC-TDOD54 HONEYWELL MU-TDOD54 Digital Output 3-30 Vdc Solid-State FTA
MC-TDOD53 HONEYWELL 51304650-250 Digital Output FTA SS relay
MC-TDOA53 51304648-275 HONEYWELL MU-TDOA53 Digital Output
MC-TDIY62 HONEYWELL MU-TDIY62 Digital Input 24 Vdc FTA
MC-TDID72 HONEYWELL MU-TDIA62 Digital Input 24 Vdc FTA
MC-TDID52 HONEYWELL MU-TDIA72 Digital Input 24 Vdc FTA
MC-TDIA72 HONEYWELL MU-TDIA72 Digital Input lsolated 120 Vac FTA -Packaged
MC-TDIA52 HONEYWELL Digital Input lsolated 120 Vac FTA MU-TDIA52
MC-TAOY53 HONEYWELL MU-TAOY52 Analog Output 16 FTA
MC-TAOY52 HONEYWELL Analog Output 16 FTA MU-TAOY52
MC-TAOX52 HONEYWELL Analog Output FTA MU-TAOX52
MC-TPIX52 HONEYWELL Pulse Input FTA MU-TPIX52
MC-TSTX53 HONEYWELL Smart Transmitter Interface FTA for Redundancy MU-TSTX53
MC-TAIH53 HONEYWELL High Level Analog Input FTA MU-TAIH53
Honeywell MC-TSTX13 Smart Transmitter Interface FTA for Redundancy MU-TSTX13
MC-TSTX03 Smart Transmitter Interface FTA MU-TSTX03
Honeywell MC-TAIH13 High Level Analog Input FTA for Redundancy MU-TAIH13
MC-TAIH03 High Level Analog Input FTA MU-TAIH03
Honeywell MC-TAIH12 High Level Analog Input MU-TAIH12
MC-TAIH02 High Level Analog Input MU-TAIH02
Honeywell MU-KFTA05 FTA I/O Cable 5M
MC-ILDX03 Long Distance I/O Link Extender Pair MU-ILDX03
Honeywell MC-IOLX02 I/O Link Extender Pair−Remote Location MU-IOLX02
MC-IOLM02 I/O Link Extender Pair−Main Location MU-IOLM02 51304419-150
Honeywell MU-PFPX01 Blank Filler Plate for I/O Slot
Honeywell MC-PDOY22 Digital Output 32 Processor MU-PDOY22 80363975-150
Honeywell MC-PDOX02 Digital Output Processor MU-PDOX02
Honeywell MC-PDIY22 Digital Input 24 Vdc Processor 80363972-150 MU-PDIY22
Honeywell MC-PDIS12 Digital input processor MU-PDIS12
Honeywell MC-PDIX02 Digital Input Processor MU-PDIX02
Honeywell MC-PAOX03 Analog Output Processor 80363969-150
Honeywell MC-PAOX03 Analog Output Processor
MC-TAIH52 HONEYWELL High Level Analog Input/STI FTA
honeywell MC-PPIX02 Pulse Input Processor (8 Inputs) MU-PPIX02
honeywell MC-PRHM01Remote Hardened Multiplexer IOP MU-PRHM01
honeywell MC-PAIL02 Analog input processor 51304362-350
honeywell MC-PLAM02 Analog Input Multiplexer Processor MU-PLAM02
Honeywell MC-PSIM11 Serial Interface Processor (16 Points/Port) 51304362-350
honeywell MC-PSDX02 51304362-250 Output 8-Point Processor MU-PSDX02
honeywell Processor 16 Inputs MC-PSTX03 51304516-250
honeywell MC-PDIX02 51304362-150 Analog input module
SAIA PCD3.W315 Number of inputs (channels)
DELTA TAU PMAC-2-ACC8T Control board
Automotion ALC12DE-010-1312 Automatic motion servo amplifier
PTM PSMU-350-3 Drive sensor
PROSOFT MVI56E-MNET Network interface module MVI56-PDPS
Reviews
There are no reviews yet.