Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Design of ABB industrial robot deburring and grinding workstation based on RobotStudio simulation software
introduction
As an official offline programming software for ABB robots, Robotstudio not only has powerful simulation and offline programming functions, but also has automatic path generation
function and simulation monitoring collision function. It can realize the simulation of robots in real scenes, so as to timely update existing robot programs. optimize. On-site teaching
programming will affect normal production activities on site.
The application of Robotstudio software offline programming can reduce on-site teaching and programming time.
As a traditional process of mechanical processing, deburring and grinding have a wide range of applications. However, for a long time, in the process of manual deburring
and polishing, there have been differences in operations between workers. The manual operation is not repeatable and the deburring effect is unstable, which has seriously
affected the surface quality and service life of the finished product; and the working environment There is a large amount of dust floating in the air and the conditions are harsh,
seriously endangering the physical and mental health of workers. With the proposal of “Made in China 2025”, intelligent manufacturing production has become an
important development direction for the transformation and upgrading of the future manufacturing industry. The use of industrial robot automated production lines for repetitive
batch processing operations can not only greatly improve production efficiency, but also greatly improve product quality. Yield and production stability. Therefore, before designing
the robot polishing program, if the shape, size and polishing amount of the workpiece to be polished are known, the robot offline program can be written on the
Robotstudio software according to the existing conditions, thereby improving the efficiency of on-site programming.
1Design task description
This task is to create a new simulation workstation in ABB robot simulation software Robotstudio. The corresponding training equipment in reality is the Yalong
YL-l360A industrial robot deburring and grinding system control and application equipment. The industrial robot selection and method of the simulation workstation are
The grinding head installed on the blue plate refers to the Yalong YL-l360A industrial robot deburring and grinding system control and application equipment, and the
workpiece is customized. The ABB industrial robot deburring and
grinding workstation simulation training process includes: creating a workstation, setting up tools, creating smart components, creating tool coordinate systems,
creating trajectories, programming, simulation design, and verification.
2 Task implementation
2.1 Create a workstation
Import the robot: First, create a new simulation workstation in the Robotstudio software. The workstation name is self-named, and then import the
corresponding industrial robot IRB1410. The robot position remains unchanged by default. Create a robot system, modify the system options, check 709-1D
eviceNetMaster/s1ave, select Chinese as the language, and leave the other options unchanged by default, then click Confirm to create the robot system
After the robot system is created, hide the industrial robot IRB1410 to facilitate subsequent workstation operations.
Import workpiece: The workpiece here is customized, and the corresponding workpiece is selected according to the actual situation on site. This article
uses the original workpiece Curvet in Robotstudio software. After importing it into the workstation, according to the reachable range of the robot, just place the
workpiece at a suitable location within the reachable range of the robot, as shown in Figure 1.
Import the grinding rotor tool: First, create a new grinding rotor tool component – rotor – copy (2) and rotor – copy (2) in the so1idworks 3D software. The
rotor – copy (2) is a rotatable grinding rotor. —The copy is the tool body, which is the grinding rotor frame, and is installed on the robot flange, as shown in Figure 2.
2.2 Setting tools
First, move the rotatable grinding rotor and the tool body to the local origin based on point A, and adjust the initial tool angle so that the grinding rotor is
parallel to the x-axis of the geodetic coordinate system, as shown in Figure 3. Set the local origin of the tool body at this time, change the position x, y,: to 0, 0, 0, and change the direction x, y,: to 0, 0, 0.
Figure 3 Tool settings
Create a new frame at point B of the tool body, name it “frame l”, and adjust the direction of frame l so that the axis is perpendicular to the
plane of point B. The specific direction is shown in Figure 4.
Excitation system ABB module NDIO-02
Excitation system ABB module NDCU-33CX 3AUA0000052751
Excitation system ABB module NDCU-12C NDCU-12CK
Excitation system ABB module NDCS03
Excitation system ABB module NDBU-95C
Excitation system ABB module NDBU-95C
Excitation system ABB module NCTM01
Excitation system ABB module NCPM01
Excitation system ABB module NCOM04
Excitation system ABB module NCOM03
Excitation system ABB module NCOM02
Excitation system ABB module NCOM01
Excitation system ABB module NCNA-01
Excitation system ABB module NCIS02
Excitation system ABB module NCIS01
Excitation system ABB module NBTM01
Excitation system ABB module NBRA-658C
Excitation system ABB module NBIO-21CU
Excitation system ABB module NBIO-21C
Excitation system ABB module NBIM02
Excitation system ABB module NBIM01
Excitation system ABB module NASO01
Excitation system ABB module NASM04
Excitation system ABB module NASM03
Excitation system ABB module NASM02S
Excitation system ABB module NASM02E
Excitation system ABB module NASM02
Excitation system ABB module NASM01
Excitation system ABB module NASI02/F
Excitation system ABB module NASI02
Excitation system ABB module NAOM01
Excitation system ABB module NAMU-01C 64702475D
Excitation system ABB module NAMM03
Excitation system ABB module NAMM02
Excitation system ABB module NAMM01
Excitation system ABB module NAIO-03
Excitation system ABB module NAIO-03
Excitation system ABB module NADS01
Excitation system ABB module MX-CS101-401
Excitation system ABB module MTB-01 3HNA006035-001
Excitation system ABB module MSR04XI
Excitation system ABB module MPRC086444-005
Excitation system ABB module MPRC086444-005
Excitation system ABB module MJFA9902
Excitation system ABB module MFS3N-230V
Excitation system ABB module MFPM02
Excitation system ABB module MFE460A033BW
Excitation system ABB module MEM86-3×192/CMBMR3
Excitation system ABB module MDO32BNS
Excitation system ABB module MDI32BIS
Excitation system ABB module MCOB-02 3HNE09204-1/03
Excitation system ABB module MCCB-02 3HNA001572-001
Excitation system ABB module MCB-02 3HNA018575-001
Excitation system ABB module MB810
Excitation system ABB module MB801V512
Excitation system ABB module MB510 3BSE044219DB
Excitation system ABB module MB510 3BSE002540R1
Excitation system ABB module MB510 3BSE002540R1
Excitation system ABB module MAI32LAD
Excitation system ABB module MAI32LAD
Excitation system ABB module M3AA80B2
Excitation system ABB module M2004HW
Excitation system ABB module LXN1604-6
Excitation system ABB module LWN2660-6EG
Excitation system ABB module LWN2660-6E 3BHL000986P7002
Excitation system ABB module LWN2660-6E
Excitation system ABB module LWN2660-6
Excitation system ABB module LWN1902-6
Excitation system ABB module LTU-785
Excitation system ABB module LTC745A101 3BHE039905R0101
Excitation system ABB module LTC743CE22 3BHE013299R0022
Excitation system ABB module LTC743CE 3BHE013299R0001
Excitation system ABB module LTC743CE 3BHE013299R0001
Excitation system ABB module LTC391AE01 HIEE401782R0001
Reviews
There are no reviews yet.