Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Double-decker train uses ABB traction transformer for the first time
Rapid urbanization has brought about problems such as traffic congestion, air pollution and population expansion, forcing railway operators and infrastructure providers
to transport more passengers on already busy rail transit systems. One solution to this outstanding contradiction is to increase the passenger capacity of existing
transportation lines.
On July 22, 2011, ABB , the world”s leading power and automation technology group, recently announced that Bombardier designed and manufactured the world”s
first traction transformer that can be installed on the top of the locomotive for its new generation double-deck EMU train . This train can be used in commuter, regional
and intercity rail transit. The use of double-decker trains is a good way to increase passenger capacity. This type of train has the best car seat ratio planning, and the improved acceleration performance
of the train also effectively shortens the travel time between stations and expands the coverage of train services.
The latest Bombardier double-decker trains have an ABB traction transformer installed on the top. They adopt an extra-wide body and better seat planning. The
number of seats per meter of the body ranges from 5 to 5.8, providing more space for passengers. Compared with similar models currently on the market, Bombardier”s
new trains can carry 35% more passengers.
ABB and Bombardier have a long-standing relationship in the field of traction equipment for regional commuter trains, high-speed trains and railway locomotives.
The traction transformer converts the grid voltage from the power grid above the train into the lower voltage required by the train”s traction system, and delivers it to the train”s
driving equipment, as well as lighting, heating, ventilation systems, on-board LCD displays, information systems and other electrical system .
In order to ensure the continuity of railway transportation and the effectiveness and reliability of the highest level of instant power supply, ABB specially designed
traction transformers for OMNEO trains. Compared with the traction transformer on the single-layer SP AC IUM* EMU train provided by Bombardier for the Francilien line
in the Paris region of France , the power supply capacity of the new transformer is increased by 25%. To save space, the roof-mounted traction system combines the
separate cooling systems for the converter and transformer. This design reduces the number of fans while reducing cost
and equipment weight. In addition, in order to save space and facilitate equipment maintenance and control, the transformer will be installed directly on the top channel
of the vehicle.
Bombardier worked with ABB to complete the design work, and the cabin baffles were installed on the inverter , cooling system and transformer to ensure that these
components fit perfectly into the arc-shaped roof and are difficult to see from the outside after installation. In order to solve the problem of the high center of gravity of the
double-decker train carriage, the transformer has also been designed accordingly to evenly distribute the weight of the equipment.
Swiss ABB will build the largest solar power plant in Northern Europe
Swiss power and automation technology group ABB announced on August 11 that it has built the largest solar power station in Northern Europe at its
low-voltage AC drive plant in Finland . The total investment in the entire solar power station project is approximately 500,000 euros, part of which comes from
the Finnish government. renewable energy investment fund.
ABB Finland”s low-voltage AC transmission plant is located in Helsinki. This solar power station is located on the roof of the factory and has a power
of 181 kilowatts. The solar power generated is mainly used to charge the factory”s forklift truck batteries and reduce the peak load of the factory”s electricity consumption.
Antti Suontausta, Senior Vice President of ABB”s low-voltage AC drives business, said: “This solar power generation system fully demonstrates the
benefits of distributed power generation near power consumption areas. Solar power generation can bring high added value to users, especially for
commercial and industrial applications . For buildings, solar power generation can reduce the building’s peak power load.”
Finland”s sunshine is not very abundant, but this solar power station can take full advantage of the region”s long sunshine hours in summer. It is
expected to generate 160,000 kilowatt hours of electricity per year, which is equivalent to the annual use of 30 local households that do not use electric
heating equipment. power. This solar power will be directly integrated into the factory power grid to charge the forklift trucks in the factory, and the excess
power can also be used by other equipment.
The solar power station uses ABB”s latest string inverters and central inverters, which are designed and produced by ABB”s transmission plant in
Helsinki. This is their first application in Finland. ABB solar inverters are mainly used to convert DC power produced by solar panels into high-quality
AC power and integrate it into the power grid.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
IS200TTURH1CFD GE Terminal board
IS200TSVCH1A GE Servo terminal board
IS200TREGH1BEC GE Circuit board assembly
IS200TDBTH6ACD GE Printed circuit board
IS200SPIDG1ABA GE Plate assembly
IS200EPSMG1AED GE control system
IS200EGDMH1AFF GE power-supply module
IS200DTAIH1ACC GE terminal board
IS200AEADH4ADA GE Gas burning card
IP-QUADRATURE GE Orthogonal encoder
IC698CPE040-JP GE Central Processing Unit
IC697CPX928-FE GE Programmable Logic Controller
IC695CPE310-ACAT GE CPU Processor
IC660ELB921M GE Single slot PCIM card
HYDRAN M2 GE Enhanced DGA monitoring for transformers
EPSCPE100-ABAC GE Enhanced performance independent controller
DS200SIOBH1ACA GE I/O Control Board
DS200SIOBH1ABA GE I/O Control Board
DS200SIOBH1AAA GE I/O Control Board
DS200SDCCG1AFD GE Drive Control Board
DS200DCFBG1BJB GE POWER SUPPLY BOARD
DS200DCFBG1BGB GE Mark V series power supply board
ACC-5595-208 GE 2 Gb/s Reflective Memory Hub Assembly
VME-7807RC-414001 GE Intel Pentium M-Based VME SBC
VMIVME-7750-466000 GE VME Single Board Computer
VMIVME-2540 GE 24-Channel Intelligent Counter/Controller
VMIVME-2536 GE 32-Channel Optically Coupled Digital I/O Board
VMIVME-2510B-100 VMIVME2510B GE 64-Bit TTL I/O Megamodule
VMIVME-1128 GE 128-bit High-Voltage Digital Input Board
V7768-320001 350-9301007768-320001 A2 GE control card
5SHY4045L0001 3BHB018162R0001 ABB Integrated grid commutation thyristor IGCT
FC95-22 HESG440295R2 ABB Relay module
FAU810 ABB flame detectors
EI813F 3BDH000022R1 ABB Ethernet module
DSSR122 48990001-NK ABB Power Supply Unit
DSRF197K01 ABB I/O Subrack with single 5V
DSAI130D 3BSE003127R1 ABB Counter Board
DSAI130D 3BSE003127R1 ABB Analog Input Board
DCP02 ABB power-supply module
CP405 ABB control panel
CI871K01 3BSE056797R1 ABB Profinet IO Interface
CI861K01 3BSE058590R1 ABB Communication Interface
CI861 ABB Communication Interface
CI858K01 3BSE018135R1 ABB DriveBus Interface
CI858 3BSE018136R1 ABB DriveBus Interface
CI857K01 3BSE018144R1 ABB Communication_Module
3BSE030220R1 CI854AK01 ABB interface modules 2022
CI854 3BSE025347R1 ABB communication interface modules
CI534V02 3BSE010700R1 ABB Submodule MODBUS Interface
CI532V05 3BSE007297R1 ABB Communication interface module
AV94A HESG440940R11 HESG216791A ABB module
216NG62A HESG441634R1K HESG216876 ABB AC power input module
216DB61 HESG324063R100J ABB Output module
GJR5252300R3101 07AC91H ABB Analog I/O module
Reviews
There are no reviews yet.