Description
PM864AK01 3BSE018161R1 Контроллер ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.PM864AK01 3BSE018161R1
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;PM864AK01 3BSE018161R1Строительная промышленность: коммерческое и промышленное строительство.
user experience
Secondly, if power system engineers are to consider the convenience and speed of using the product in the future, operability needs to be improved while ensuring stability.
This requires a simple self-service system and an operation interface with good visual effects that can meet the needs of users. Some operating habits and other aspects
* cut costs
Furthermore, since there are many nodes in the power system, the same product needs to be deployed on many nodes. Then when the quantity of required products increases,
cost issues will inevitably be involved. How to solve the research and development, construction and installation of products and better reduce operating expenses is also a major issue that ABB needs to consider.
Implementation of communication between Omron vision system and ABB industrial robot
introduction
In modern production processes, vision systems are often used to measure and identify products, and then the results are transmitted to industrial robots for work
through communications . In this process, communication settings are very important. This article analyzes the communication implementation process between the Omron
FH-L550 vision system and ABB industrial robots. The main task is to enable the vision system to provide data detection results for ABB industrial robots, and the industrial robots
perform related operations based on the data results. This article mainly discusses the entire process of visual system communication transmission implementation.
1Ethernet-based communication settings in vision software
The main communication methods of Omron FH-L550 vision system controller are as follows [2], namely: parallel communication, PLCLINK communication, Ethernet
communication, EtherCAT communication, and protocol-free communication. These five communication methods have their own characteristics in the communication process.
In modern equipment, Ethernet communication
(Ethernet communication) is the most common, so this article uses the Ethernet communication method as an example to analyze and explain.
First, select the “Tools” option in the main interface, select the “System Settings” menu (Figure 1), after entering the “System Settings” menu, click the “Startup Settings” option,
and select the “Communication Module” tab (Figure 2 ), after completing the above settings, return to the main interface to save the settings (Figure 3). Finally, select the function
menu to perform system restart settings, and wait for the system to complete the restart before proceeding to the next step.
After the system restarts, click the “System Settings” menu again and select the “Ethernet (No Protocol (UDP))” option (Figure 4). In this option, there will be parameter settings
such as IP address and port. What needs to be noted here are the two IP address parameters. The parameters in “Address Setting 2” need to be filled in. The information that needs
to be filled in includes the IP address of the vision controller, subnet mask, default gateway and DNS server.
In the port number setting of “Input/Output Settings” at the bottom of the menu, set the port number for data input with the sensor controller. Note that the port number should
be the same as the host side, and finally complete the settings and corresponding data saving work.
2ABB industrial robot communication settings
First, configure the WAN port IP address for the ABB industrial robot. Select the control panel in the teach pendant, then select configuration, then select communication in
the theme, click IPSetting, set the IP information and click “Change” to save the IP information.
Next, use the SocketCreate robot command to create a new socket using the streaming protocol TCP/IP and assign it to the corresponding variable (Figure 5). Then
use the SocketConnect command to connect the socket to the remote computer. After the communication connection is completed, it is necessary to send and receive
information from the visual system. To send information, use the SocketSend instruction to send data instructions to the remote computer. After the vision system collects
information and makes judgments, the industrial robot system will receive data from the remote computer. The data reception is completed using the
SocketReceive instruction. This instruction stores the data in the corresponding string variable while receiving the data. Useful information needs to be extracted from the
received data information, which requires StrPart to find the specified character position instruction, extract the data at the specified position from the string, and assign the
result to a new string variable. Finally, when the socket connection is not in use, use SocketCloSe to close it.
05701-A-0361 Backplane Serial communication controller and monitor
810-800081-022 LAM Circuit board module
05074-A-0122 05704-A-0121 05704-A-0131 Relay interface card
810-066590-004 LAM Circuit board module
T8403C Trusted TMR 24Vdc digital input module
05701-A-0325 DC input card
T9110 AADvance controller
T9451 AADvance controller Controller module
T9402 AADvance controller
T8311 Trusted TMR expander Interface
T8151B Trusted ® Communication Interface Adapter
T8310 Trusted TMR expander Interface
05704-A-0145 Four-channel controller card 4-20 MA input
GE IS215VCMIH2BB IS200VCMIH2BCC Mark VI System board components
E1740A Agilent Time interval analyzer
GE IS215VCMIH2CA IS200VCMIH2CAA VME communication card
E1406A Agilent Time interval analyzer
05704-A-0144 Four channel control card catalytic input
FBM233 P0926GX FBM233 Field device system integration module
IS420UCSBH1A Mark VIe series UCSB controller
DDC779BE02 3BHE006805R0002 Control panel and control system
MMS6120 Dual channel bearing vibration measurement module MMS 6120
24765-02-01 Housing expansion sensor assembly
CI526 3BSE006085R1 Interface Module
3BSE005831R1 PM632 Processor Unit
3BSE004773R1 CS513K02 MasterBus 300E communication interface
PU512V1 3BSE004736R1 Real Time Accelerator (RTA) Module
3BSE004726R1 DSTD197 Connection Unit 8 ch, 120V
3BSE004723R1 DSTD190 Connection Unit 32 Ch
3BSE004382R1 DSRF185 ABB
DSDX180 3BSE003859R1 Digital In / Out Module
3BSE003832R1 SC510 Submodule Carrier without CPU
3BSE003829R1 CI532V04 AC410 » Communication Modules
3BSE003827R1 CI532V02 MODBUS Interface, 2 ch
SA167 3BSE003390R1 Power Supply Unit AC 115V / DC
SA168 3BSE003389R1 Power Supply Unit
07KR51-230VAC 1SBP260511R1001 Controller Basic Unit
07KP93 GJR5253200R1161 Communication Processor
ABB 07KP90 GJR5251000R0303 Communications Module
07KP53 1SBP260162R1001 MODBUS Coupler (07KP53)
07DC92 GJR5252200R0101 Configurable Digital I/O Module
07DC91 GJR5251400R0202 Digital I/O module
07CR41-c12 1SBP260020R1001 Advant Controller Basic Unit
07CR41 1SBP260020R1001 07CR41 Advant Controller Basic Unit – 24VDC
07AI91 GJR5251600R0202 Analog I/O, module
07AC91 GJR5252300R0101 ABB Advant OCS Analog I/O Unit
HIEE320693R0001 NU8976A Power module
HIER466665R0099 NU8976A99 Excitation module
Reviews
There are no reviews yet.