Description
PHARPS03000000 Использование параметров ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.PHARPS03000000
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;PHARPS03000000Строительная промышленность: коммерческое и промышленное строительство.
0 Preface
Germany”s “Industry 4.0″ and the United States” “Industrial Internet” will
restructure the world”s industrial layout and economic structure, bringing different challenges and
opportunities to countries around the world. The State Council of China issued “Made in China 2025” as an action plan
for the first ten years of implementing the strategy of manufacturing a strong country, which will accelerate the integrated
development of IoT technology and manufacturing technology [1]. IoT collects data on machine operations, material usage
, facility logistics, etc., bringing transparency to operators. This transparency is brought about by the application of data analytics,
which refers to the use of statistical and machine learning methods to discover different data characteristics and patterns. Machine
learning technology is increasingly used in various manufacturing applications, such as predictive maintenance, test time reduction,
supply chain optimization, and process optimization, etc. [2-4]. The manufacturing process of enterprises has gradually developed from
the traditional “black box” model to the “multi-dimensional, transparent and ubiquitous perception” model [5].
1 Challenges facing manufacturing analysis
The goal of manufacturing analytics is to increase productivity by reducing costs without compromising quality:
(1) Reduce test time and calibration, including predicting test results and calibration parameters;
(2) Improve quality and reduce the cost of producing scrap (bad parts) by identifying the root causes of scrap and optimizing
the production line on its own;
(3) Reduce warranty costs, use quality testing and process data to predict field failures, and cross-value stream analysis;
(4) Increase throughput, benchmark across production lines and plants, improve first-pass rates, improve first-pass throughput,
and identify the cause of performance bottlenecks such as overall equipment effectiveness (OEE) or cycle time;
GE DS200TBQCG1ABB
A-B power module 1769-IA16
A-B power module 1769-IT6-K8
A-B power module 1769-IT6
A-B power module 1769-IT6 A
A-B power module 1769-L23E-QB1B-A
A-B power module 1769-L23E-QB1B
A-B power module 1769-L32E
A-B power module 1769-OW16
A-B power module 1769-PA2
A-B power module 1770-950
A-B power module 1770-FF
A-B power module 1770-KFD
A-B power module 1770-XYB
A-B power module 1770-XYC
A-B power module 1771-A2B
A-B power module 1771-A4B
A-B power module 1771-ACN
A-B power module 1771-CFM-Z1
A-B power module 1771-CFM
A-B power module 1771-CL
A-B power module 1771-IAN
A-B power module 1771-IBD
METSO AI card AI8H D201189
METSO AI card D201189
METSO AI card AO4H D201190
METSO AI card A413188
METSO AI card A413188
METSO AI card D201376
METSO AI card D201190
METSO AI card D201134
METSO AI card D201136
METSO AI card A413600
METSO AI card A413600
METSO AI card D201832
METSO AI card A413331
METSO AI card D201471
METSO AI card D201466
METSO AI card D201190
METSO AI card D201925
METSO AI card ND9103HX
A-B output module 1771-IBN
A-B output module 1771-IFMS
A-B output module 1771-IQC
A-B output module 1771-IR
A-B output module 1771-IVN
A-B output module 1771-IXE
A-B output module 1771-NC6
A-B output module 1771-NR
A-B output module 1771-OAD
A-B output module 1771-OB
A-B output module 1771-OBD
A-B output module 1771-OBDS
A-B output module 1771-OBN
A-B output module 1771-OD16
A-B output module 1771-OFE2
A-B output module 1771-OJ
A-B output module 1771-OX
A-B output module 1771-OZ
A-B output module 1771-OZL
A-B output module 1771-P4R
Reviews
There are no reviews yet.