Description
MC2-440-12TSB-1-11 Таблицы данных
современными требованиями дизайна. Как и XV303, конденсаторный многоточечный сенсорный дисплей поддерживает реализацию
современного пользовательского интерфейса (управление жестами)
и предлагает 7 – и 10 – дюймовые дисплеи, в том числе версии с высоким соотношением сторон 16: 9.
просто и требует меньше компонентов и инженерных работ, чем традиционная проводка. SmartWire – DT интегрирует связь и ввод / вывода
непосредственно в устройства управления, отображения и переключения, открывая новые возможности для инновационных и экономичных решений.
ABB: Запасные части для промышленных роботов серии DSQC, Bailey INFI 90, IGCT, например: 5SHY6545L0001 AC1027001R0101 5SXE10 – 0181, 5SHY3545 L0009, 5SHI3545L0010 3BHB013088 R0001 3BHE009681R0101 GVC750BE101, PM866, PM861K01, PM864, PM510V16, PPD512, PPPD113, PP836A, P865A, 877, PPP881, PPPP885, PPSL500000 4 3BHL00390P0104 5SGY35L4510 и т.д.
General Electric: запасные части, такие как модули, карты и приводы. Например: VMVME – 7807, VMVME – 7750, WES532 – 111, UR6UH, SR469 – P5 – HI – A20, IS230SRTDH2A, IS220PPDAH1B, IS215UCVEH2A, IC698CPE010, IS200SRTDH2ACB и т.д.
Система Bently Nevada: 350 / 3300 / 1900, предохранительные зонды и т.д., например: 3500 / 22M, 3500 / 32, 3500 / 15, 3500 / 23500 / 42M, 1900 / 27 и т.д.
Системы Invis Foxboro: Серия I / A, управление последовательностью FBM, трапециевидное логическое управление, обработка отзыва событий, DAC,
обработка входных / выходных сигналов, передача и обработка данных, такие как FCP270 и FCP280, P0904HA, E69F – TI2 – S, FBM230 / P0926GU, FEM100 / P0973CA и т.д.
Invis Triconex: Модуль питания, модуль CPU, модуль связи, модуль ввода – вывода, например 300830937214351B, 3805E, 831235114355X и т.д.
Вудворд: контроллер местоположения SPC, цифровой контроллер PEAK150, например 8521 – 0312 UG – 10D, 9907 – 149, 9907 – 162, 9907 – 164, 9907 – 167, TG – 13 (8516 – 038), 8440 – 1713 / D, 9907 – 018 2301A, 5466 – 258, 8200 – 226 и т.д.
Hima: модули безопасности, такие как F8650E, F8652X, F8627X, F8678X, F3236, F6217, F6214, Z7138, F8651X, F8650X и т.д.
Honeywell: Все платы DCS, модули, процессоры, такие как: CC – MCAR01, CC – PAIH01, CC – PAIH02, CC – PAIH51, CC – PAIX02, CC – PAON01, CC – PCF901, TC – CR014, TC – PD011, CC – PCNT02 и т.д.
Motorola: серии MVME162, MVME167, MVME172, MVME177, такие как MVME5100, MVME5500 – 0163, VME172PA – 652SE, VME162PA – 344SE – 2G и другие.
Xycom: I / O, платы VME и процессоры, такие как XVME – 530, XVME – 674, XVME – 957, XVME – 976 и т.д.
Коул Морган: Сервоприводы и двигатели, такие как S72402 – NANA, S6201 – 550, S20330 – SRS, CB06551 / PRD – B040SSIB – 63 и т. Д.
Bosch / Luxer / Indramat: модуль ввода / вывода, контроллер PLC, приводной модуль, MSK060C – 0600 – NN – S1 – UP1 – NNN, VT2000 – 52 / R900033828, MHD041B – 144 – PG1 – UN и т.д.
(5) Perform predictive maintenance, analyze machine operating conditions, determine the main
causes of failures, and predict component failures to avoid unplanned downtime.
Traditional quality improvement programs include Six Sigma, Deming Cycle, Total Quality Management (TQM), and Dorian Scheinin’s
Statistical Engineering (SE) [6]. Methods developed in the 1980s and 1990s are typically applied to small amounts
of data and find univariate relationships between participating factors. The use of the MapReduce paradigm to simplify data processing in
large data sets and its further development have led to the mainstream proliferation of big data analytics [7]. Along with the development of
machine learning technology, the development of big data analytics has provided a series of new tools that can be applied to manufacturing
analysis. These capabilities include the ability to analyze gigabytes of data in batch and streaming modes, the ability to find complex multivariate
nonlinear relationships among many variables, and machine learning algorithms that separate causation from correlation.
Millions of parts are produced on production lines, and data on thousands of process and quality measurements are collected for them, which is
important for improving quality and reducing costs. Design of experiments (DoE), which repeatedly explores thousands of causes through
controlled experiments, is often too time-consuming and costly. Manufacturing experts rely on their domain knowledge to detect key
factors that may affect quality and then run
DoEs based on these factors. Advances in big data analytics and machine learning enable the detection of critical factors that effectively
impact quality and yield. This, combined with domain knowledge, enables rapid detection of root causes of failures. However,
there are some unique data science challenges in manufacturing.
(1) Unequal costs of false alarms and false negatives. When calculating accuracy, it must be recognized that false alarms
and false negatives may have unequal costs. Suppose a false negative is a bad part/instance that was wrongly predicted to
be good. Additionally, assume that a false alarm is a good part that was incorrectly predicted as bad. Assuming further that
the parts produced are safety critical, incorrectly predicting that bad parts are good (false negatives) can put human lives
at risk. Therefore, false negatives can be much more costly than false alarms. This trade-off needs to be considered when
translating business goals into technical goals and candidate evaluation methods.
HE693ADC410A GE Analog Input Modules
FBM203 P0914SV FOXBORO Channel Isolated 8 Input RTD
IC754CSL12CTD GE Operator Interface Terminal
IC754VSI12VTD GE 12-inch color TFT touch fast panel display
00-108-947 KUKA KRC2 MR-E MOTOR CABLE
5SHX14H4502 3BHB003230R0101 ABB IGCT module
5SHX10H6004 3BHB003230R0101 ABB IGCT module
800-372-7402 AVS-1700-ACX Bearing Engineers Advanced Vector Servo Drive
Triconex 3201 CM3201 Triconex Communication Module
TPPB-02 3HNA023200-00101 ABB Teaching device LCD screen
GCC960C102 3BHE033067E0102 ABB Inverter control cabinet logic board
LID43.03 EMG Relay
IC660EBD025 GE electronics assembly block
GCC960C103 3BHE033067R0103 ABB Terminal clamping module
SNAT609TAI 61073779 ABB Control Board
SNAT603CNT 61007041 ABB PCB Board
RK682011-BA RL0B 100 ABB Standard Unit Module
SNAT602TAC 61001395G1 ABB PC Board
PMC-2/11/05/000/00/00/01/00/00 SCHNEIDER SERVO DRIVE
PR6423/000-000 EPRO Eddy Current Displacement Transducer Sensor
DSAI133A 3BSE018290R1 ABB Analog Input Board 32 Channels
AS-BDAU-204 Schneider analog input module
AT686W-1-1-1-1 GE
2422 OUT2422 SES
2411 IND2411
2409 INP2409 SES
2402 GAS2402 SES
369-LO-0-M-F-E-0-0 GE 369 Motor Management Relay
HOI-653A HP
1769-L35CR Allen Bradley CompactLogix ControlNet Processor
369-C100 369-C101 GE
369-A200 GE
SW1-31 ECS1737-3 GE Switching Power Supply Board
IC660BBD023 GE 24 Volts DC rated I/O block
531X304IBDARG1 GE PC Board 531X
531X304IBDASG1 GE BASE DRIVE CARD
531X304IBDAMG1 GE AC2000 BASE DRIVE CARD
531X303MCPBDG1 GE AC Power Supply
SDV144-S13 Yokogawa Input Module
531X303MCPARG1 GE AC Power Supply board
NFAI143-H00 Yokogawa Analog Input Module
1771-IXE Allen-Bradley Thermocouple / Milivolt Input module
F8651X HIMA CPU Module
0-60063-1 60063-1 RELIANCE REGULATOR BOARD SA3100 AC DRIVE
MVME-147A MOTOROLA 25MHz, 16MB Single Board Computer
5X00622G01 Westinghouse RTD Input Module
5X00605G01 Westinghouse Analog Input Module
5X00583G01 Westinghouse CONTACT INPUT MODULE
5X00501G01 Westinghouse I/O Interface Controller
5X00481G04 Westinghouse Controller Model
5X00419G01 Westinghouse CONTACT INPUT MODULE
мы организуем фото на складе, чтобы подтвердить
чтобы вернуть их вам. Конечно, мы ответим на ваши озабоченности как можно скорее.
Специально рекомендуемые продукты:
http://www.dcsmodule.ru/product/he693cal101-ge-fanuc-controller-carrie/
Reviews
There are no reviews yet.