Description
LDMUI-01 Использование параметров ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.LDMUI-01
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;LDMUI-01Строительная промышленность: коммерческое и промышленное строительство.
According to reports, ABB”s technical expertise and experience in many industries will be combined with Microsoft”s Azure intelligent cloud system and B2B
engineering capabilities to create greater value for customers. Combined with ABB”s more than 70 million connected devices installed globally and more than
70,000 running control systems, ABB and Microsoft will join forces to create one of the world”s largest IIoT industrial cloud platforms.
It is worth noting that IoT expert Guido Jouret (formerly general manager of Cisco’s IoT department) became the group’s chief digital officer on October 1, 2016.
This marks that ABB is accelerating digital transformation and comprehensively building a new “Internet of Things+” ecosystem. ABB also hopes to obtain higher
profits from this, and has proposed a financial target for 2015-2020 of pre-tax profit growth of 11%-16%.
FANUC
FANUC recently established the IoT platform Fanuc Intelligent Edge Link and Drive (FIELD), which uses NVIDIA artificial intelligence system. FIELD can realize the
connection of machine tools, robots, peripheral equipment and sensors in the automation system and provide advanced data analysis to improve the production quality,
efficiency, flexibility and equipment reliability in the production process – thereby improving the overall efficiency of the equipment ( OEE) and promote the improvement of production profits.
The system can also improve robot productivity through artificial intelligence and bring autonomous learning capabilities to automated factory robots around the
world. FANUC will use a series of GPUs and deep learning software designed and produced by NVIDIA to enable AI artificial intelligence to be used in clouds, data centers
and embedded devices.
When talking about the cooperation with FANUC, NVIDIA co-founder and CEO Jensen Huang said that the era of AI artificial intelligence has officially arrived.
Through the deep learning function of GPU, it will stimulate a
new wave of software learning and machine inference calculations. The most exciting of these is the ability of robots to understand their surroundings and
interact with humans. NVIDIA is very happy to work with FANUC, the global leader in automated factories and robots, to build intelligent machines to benefit the future of mankind.
It is reported that FIELD continues the success of the existing Fanuc ZDT (zero downtime function), which effectively combines Cisco cloud technology,
IoT data collection software and point-to-point security. After connecting the robot through the use of an industrial Ethernet switch, it is then connected to Cisco”s UCS server – the system runs
based on FANUC and Cisco”s ZDT data collection software. Automotive industry users can immediately realize reductions in downtime and cost savings after using the system.
FIELD provides users and application developers with advanced machine learning and artificial intelligence capabilities and brings manufacturing to
new heights of productivity and efficiency. Currently, FANUC has applied these new technologies to robotic bulk picking, production anomaly detection and fault
prediction. Because FIELD combines artificial intelligence and cutting-edge computer technology, distributed learning is possible. The operating data of robots and
equipment are processed in real time on the network,
which also enables more intelligent coordination of production between various equipment, making complex production coordination that was previously difficult to
achieve easily completed.
In fact, many years ago, FANUC began to cooperate with Cisco to carry out the “non-stop” zero downTIme plan. In the plan, FANUC and Cisco will join forces to
build an Internet of Things system that will allow FANUC to supervise
every robot in the factory, predict abnormal conditions of the robots, and send more technicians to repair the robots before problems occur. So far, the program has
tested 2,500 robots, including FANUC”s major customer GM General Motors. According to FANUC, the test program saved customers $38 million.
YASKAWA
After talking so much about the Internet of Things strategy of the industrial robot giant, let’s take a break here at Yaskawa and talk about the past.
Midea and KUKA have officially received their marriage certificates, but you must know that as early as August 2015, Midea announced its
robot strategy and established two joint venture subsidiaries with Japan”s Yaskawa Electric.
The two subsidiaries are respectively for industrial robots and service robots, including Guangdong Yaskawa Midea Industrial Robot Co.
, Ltd. (Midea”s equity accounted for 49%) and Guangdong Midea Yaskawa Service Robot Co., Ltd. (Midea”s equity accounted for 60%).
This shows that as early as 2015, Midea was actually “in love” with Yaskawa, but by 2016, she married Kuka.
UFC911B106 3BHE037864R0106 System board card
UFC911B108 ABB Control module card key
UFC911B110 ABB Input control panel
UFC921A101 3BHE024855R0101 Interface module
UFD203A101 3BHE019361R0101 ABB Industrial Ethernet
UNITROL 1010 PLC control system
UNITROL 1020 ABB Input output module
UNITROL1000 Z.V3 3BHE014557R0003 ABB Numerical control module
UNS0007A-P V1 ABB DCS controller module
UNS0119A-P,V101 ABB Digital input submodule
UNS0874A ABB Control I/O module
UNS0887A-P 3BHE008128R0001 Analog input module
UNS2880b-P,V2 3BHE014967R0002 Analog output circuit board
UNS2881B-P V1 ABB Robot network communication card
UNS2882A 3BHE003855R0001 Connecting terminal unit
UNS2980c-ZV4 ABB Robot axis calculation board
UNS4881b,V4 3BHE009949R0004 ABB Analog output circuit board
UNS3670A-Z V2 HIEE205011R0002 Servo servo module
C3K122-24P ENTERASYS Controller module
C3K122-24 ENTERASYS Control of signal
C3G124-48 ENTERASYS Processor module
C3G124-24 ENTERASYS Processor module
ENTERASYS C3G124-24P Network interface module
08G20G4-48P 800-Series Layer 2 switch
08G20G4-48 800-Series Layer 2 switch
08G20G4-24P 800-Series Layer 2 switch
08G20G2-08P 800-Series Layer 2 switch
ENTERASYS 08H20G4-48 800-Series Layer 2 switch
08G20G2-08 800-Series Layer 2 switch ENTERASYS
08H20G4-48P 800-Series 10/100 Switches ENTERASYS
08H20G4-24P ENTERASYS switch
08H20G4-24 ENTERASYS 24 port 10/100 800-Series Layer 2 switch
B5K125-48 and B5K125-48P2 ENTERASYS gateway
B5K125-24 and B5K125-24P2 ENTERASYS Switch
B5G124-24 and B5G124-24P2 Ethernet Switch
ENTERASYS B5G124-24 Ethernet Switch
I3H252-8TX-2FX ENTERASYS High-end Secure Networks
I3H252-8FXM ENTERASYS
I3H252-6TX-MEM ENTERASYS Ethernet
ENTERASYS I3H252-4FX-MEM Ethernet L2 Switch
switch I3H252-4FXM ENTERASYS
I3H252-12TX ENTERASYS Ethernet switch
Switch A2H254-16 ENTERASYS
A2H124-24FX Switch ENTERASYS
ENTERASYS A2H124-48P Switch Ports
A2H124-48 Switch Ports ENTERASYS
Reviews
There are no reviews yet.