Sale!

IS200EAUXH1A General Electric Processor Board Mark VI

Original price was: $1,888.00.Current price is: $1,688.00.

МодельIS200EAUXH1A

Первоначальная гарантия на один год.
IS200EAUXH1A Параметры

IS200EAUXH1A Размер 30 * 20 * 30
IS200EAUXH1A Вес 2 кг

Контактное лицо: г – н Рай

WeChat: 17750010683

WhatsApp: + 86 177500 10683

Электронная почта 3221366881@qq.com

Category:
Phone: +86 17750010683
Email: 3221366881@qq.com
connect:Mr. Lai

Description

Figure 4 Tool Framework

2.3Smart component creation

Call the Rotator component: This component is used to allow the rotatable grinding rotor to rotate during simulation to simulate the real grinding scene. In the
parameters of the Rotator component, set the reference to object, the reference object to the frame l, and the object to a copy of the rotor. (2) The rotary grinding rotor
can be rotated, and the speed is l20mm/s (the speed of the grinding head will affect the quality of the finished product) ), the reference center axis is: axis (based on frame
l, centerpoint x, y,: set to 0, 0, 0, Axis set x, y,: 0, 0, l000mm).

Call the Attach component: This component is used to allow the rotatable grinding rotor to be integrated with the tool body. When the tool body is installed
on the flange, it can follow the movement of the flange. In the parameters of the Attach component, set the sub-object to be a copy of the rotor (2) for the rotatable
polishing rotor, and the parent object is the tool body of a copy of the rotor. The offset and orientation are
based on the offset of point B relative to the origin. For setting, you can use the measurement tool in Robotstudio software to measure, and then set the parameters
after measurement.

Verification: Install a copy of the rotor tool body onto the robot flange, and then click Execute in the Attach component. You can observe whether the position of the
rotatable grinding rotor is correct at this time. If there is a deviation, adjust the position in time, as shown in the figure. 5 shown.
Figure 5 Tool installation

2.4 Create tool coordinate system

Use the six-point method to create the tool coordinate system Too1data on the robot teach pendant at the center of the rotor. Change the tool coordinate
system to Too1data in the basic options. At this time, click on the robot manual linear and you can drag the robot to move linearly at will.

2.5 Creating trajectories and programming

Determine the trajectory: According to the requirements of the work task, design the grinding trajectory around the workpiece and determine the trajectory
points and transition points required for the grinding trajectory. The grinding action process is shown in Figure 6.
Setting I/O and programming: Yalong IY-l3-LA industrial robot deburring and grinding system control and application equipment adopts 0sDC-52 6/o
communication board, the address is 10, Do1 is the digital output signal, the address is 1 . First set the I/O board, then set the I/O digital output signal Di1,
and then program on the simulation teaching pendant. The procedure is as follows:

PRoCmain()

setDo1: Set the Do1 signal to allow the external grinding rotor to start rotating.

waitTime1: The robot stays in place and does not move, waits for 1s, and lets the polishing rotor turn to the specified speed, transition

MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10. Point jpos10 is used as the starting
point and end point of the robot”s action.

Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10

Move4pL0,v1000,z50,Too1data1: Move straight line grinding to pL0 point

Move4p30,v1000,z50,Too1data1: Move straight line grinding to point p30

Move4p40,v1000,z50,Too1data1: Move straight line grinding to p40 point

Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10

MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10

waitTime1: wait 1s, transition

ResetDo1: Reset the Do1 signal to stop the rotor ENDPRoC

2.6 Simulation design and verification

Simulation design: Create a smart component to input the Di1 signal, and use the Di1 signal to simulate the external polishing start signal to
execute the Rotator component and Attach component of the smart component to achieve the visual effect of rotating and polishing the polishing rotor.
In the workstation logic design, the smart component input Di1 signal is associated with the robot Do1 signal, so that the robot signal Do1 can control
the smart component input Di1 signal, thereby controlling the start and stop of the rotation of the polishing rotor.

Verification: In the program of the teaching pendant, first set the pp command to move to Main, and then set the robot startup mode to automatic.
Click play in the simulation of Robotstudio software to verify whether the trajectory is consistent with the assumption, and optimize the path in time for
problems existing in the simulation.

3Summary and outlook

This design is based on the programming simulation of the Yalong Y4-1360A industrial robot deburring system to control the grinding robot workstation.
It covers aspects such as creating a workstation, setting
up tools, creating smart components, creating tool coordinate systems, creating trajectories, programming, simulation design, and verification. Starting
with it, the polishing simulation of the workstation is realized through the smart component function of Robotstudio software. The animation effect is intuitive
and lifelike, which not only facilitates teaching demonstrations, but also facilitates program debugging, and has application value for both production and teaching.

In the planning and design of the workpiece grinding trajectory, according to the different roughness and grinding amount process requirements of the
workpiece, the rotation speed, feed speed, feed amount, and grinding angle of the grinding rotor are also different. The feed amount can be adjusted in
time according to the on-site conditions. , feed speed, rotor speed, grinding angle and other parameters. After appropriate adjustments, the motion trajectory is written with the
corresponding program on the Robotstudio software to further reduce the possibility of robot collisions and singular points contained in the trajectory
during the actual debugging process. ,Optimize paths and improve debugging efficiency.

Excitation system ABB module UAD155A0111 3BHE029110R0111
Excitation system ABB module UAD149A0011 3BHE014135R0011
Excitation system ABB module UAD149A0011 3BHE014135R0011
Excitation system ABB module UAD149
Excitation system ABB module UAD142A01 3BHE012551R0001
Excitation system ABB module UAD142A01 3BHE012551R0001
Excitation system ABB module UAD142A01
Excitation system ABB module UAC389AE02C HIEE300888R0002
Excitation system ABB module UAC389AE02 HIEE300888R0002
Excitation system ABB module UAC389AE02 HIEE300888R0002
Excitation system ABB module UAC389AE02 HIEE300888R0002
Excitation system ABB module UAC389AE02
Excitation system ABB module UAC383AE01 HIEE300890R0001
Excitation system ABB module UAC383AE01 HIEE300890R0001
Excitation system ABB module UAC383AE01
Excitation system ABB module UAC383AE01
Excitation system ABB module UAC383AE01
Excitation system ABB module UAC375AE103 3BHB006621R0103
Excitation system ABB module UAC326AE01 HIEE401481R1
Excitation system ABB module UAC326AE01
Excitation system ABB module UAC326AE HIEE410409P104
Excitation system ABB module UAC326AE
Excitation system ABB module UAC326AE
Excitation system ABB module UAC326AE
Excitation system ABB module UAC318AE
Excitation system ABB module UAC318AE
Excitation system ABB module UAC317AEV1
Excitation system ABB module UAA326A04 HIEE300024R4
Excitation system ABB module UAA326A04
Excitation system ABB module UAA326A02
Excitation system ABB module TY805F
Excitation system ABB module TY804K01
Excitation system ABB module TY803F
Excitation system ABB module TY802F
Excitation system ABB module TY801K01
Excitation system ABB module TY801K01
Excitation system ABB module TY800F
Excitation system ABB module TVOC-2-240-C
Excitation system ABB module TVOC-2-240-C
Excitation system ABB module TVOC-2-240
Excitation system ABB module TVB3101-1/ISC
Excitation system ABB module TV831F
Excitation system ABB module TV821F
Excitation system ABB module TU921S
Excitation system ABB module TU921S
Excitation system ABB module TU921N
Excitation system ABB module TU921B
Excitation system ABB module TU891
Excitation system ABB module TU890
Excitation system ABB module TU890
Excitation system ABB module TU854
Excitation system ABB module TU852
Excitation system ABB module TU851
Excitation system ABB module TU850
Excitation system ABB module TU849
Excitation system ABB module TU849
Excitation system ABB module TU848
Excitation system ABB module TU848
Excitation system ABB module TU847
Excitation system ABB module TU847
Excitation system ABB module TU846
Excitation system ABB module TU846
Excitation system ABB module TU845
Excitation system ABB module TU845
Excitation system ABB module TU844/3BSE021445R1
Excitation system ABB module TU844
Excitation system ABB module TU843
Excitation system ABB module TU843
Excitation system ABB module TU842
Excitation system ABB module TU842
Excitation system ABB module TU841
Excitation system ABB module TU841
Excitation system ABB module TU840
Excitation system ABB module TU840
Excitation system ABB module TU839

Reviews

There are no reviews yet.

Be the first to review “IS200EAUXH1A General Electric Processor Board Mark VI”

Your email address will not be published. Required fields are marked *