Description
HYDRAN M2 General Electric
высотой 3U, расположенный в раме управления под DSPX.
волоконно – оптический разъем на передней панели и передаются в модуль обнаружения заземления.
ABB: Запасные части для промышленных роботов серии DSQC, Bailey INFI 90, IGCT, например: 5SHY6545L0001 AC1027001R0101 5SXE10 – 0181, 5SHY3545 L0009, 5SHI3545L0010 3BHB013088 R0001 3BHE009681R0101 GVC750BE101, PM866, PM861K01, PM864, PM510V16, PPD512, PPPD113, PP836A, P865A, 877, PPP881, PPPP885, PPSL500000 4 3BHL00390P0104 5SGY35L4510 и т.д.
General Electric: запасные части, такие как модули, карты и приводы. Например: VMVME – 7807, VMVME – 7750, WES532 – 111, UR6UH, SR469 – P5 – HI – A20, IS230SRTDH2A, IS220PPDAH1B, IS215UCVEH2A, IC698CPE010, IS200SRTDH2ACB и т.д.
Система Bently Nevada: 350 / 3300 / 1900, предохранительные зонды и т.д., например: 3500 / 22M, 3500 / 32, 3500 / 15, 3500 / 23500 / 42M, 1900 / 27 и т.д.
Системы Invis Foxboro: Серия I / A, управление последовательностью FBM, трапециевидное логическое управление, обработка отзыва событий, DAC,
обработка входных / выходных сигналов, передача и обработка данных, такие как FCP270 и FCP280, P0904HA, E69F – TI2 – S, FBM230 / P0926GU, FEM100 / P0973CA и т.д.
Invis Triconex: Модуль питания, модуль CPU, модуль связи, модуль ввода – вывода, например 300830937214351B, 3805E, 831235114355X и т.д.
Вудворд: контроллер местоположения SPC, цифровой контроллер PEAK150, например 8521 – 0312 UG – 10D, 9907 – 149, 9907 – 162, 9907 – 164, 9907 – 167, TG – 13 (8516 – 038), 8440 – 1713 / D, 9907 – 018 2301A, 5466 – 258, 8200 – 226 и т.д.
Hima: модули безопасности, такие как F8650E, F8652X, F8627X, F8678X, F3236, F6217, F6214, Z7138, F8651X, F8650X и т.д.
Honeywell: Все платы DCS, модули, процессоры, такие как: CC – MCAR01, CC – PAIH01, CC – PAIH02, CC – PAIH51, CC – PAIX02, CC – PAON01, CC – PCF901, TC – CR014, TC – PD011, CC – PCNT02 и т.д.
Motorola: серии MVME162, MVME167, MVME172, MVME177, такие как MVME5100, MVME5500 – 0163, VME172PA – 652SE, VME162PA – 344SE – 2G и другие.
Xycom: I / O, платы VME и процессоры, такие как XVME – 530, XVME – 674, XVME – 957, XVME – 976 и т.д.
Коул Морган: Сервоприводы и двигатели, такие как S72402 – NANA, S6201 – 550, S20330 – SRS, CB06551 / PRD – B040SSIB – 63 и т. Д.
Bosch / Luxer / Indramat: модуль ввода / вывода, контроллер PLC, приводной модуль, MSK060C – 0600 – NN – S1 – UP1 – NNN, VT2000 – 52 / R900033828, MHD041B – 144 – PG1 – UN и т.д.
(5) Perform predictive maintenance, analyze machine operating conditions, determine the main
causes of failures, and predict component failures to avoid unplanned downtime.
Traditional quality improvement programs include Six Sigma, Deming Cycle, Total Quality Management (TQM), and Dorian Scheinin’s
Statistical Engineering (SE) [6]. Methods developed in the 1980s and 1990s are typically applied to small amounts
of data and find univariate relationships between participating factors. The use of the MapReduce paradigm to simplify data processing in
large data sets and its further development have led to the mainstream proliferation of big data analytics [7]. Along with the development of
machine learning technology, the development of big data analytics has provided a series of new tools that can be applied to manufacturing
analysis. These capabilities include the ability to analyze gigabytes of data in batch and streaming modes, the ability to find complex multivariate
nonlinear relationships among many variables, and machine learning algorithms that separate causation from correlation.
Millions of parts are produced on production lines, and data on thousands of process and quality measurements are collected for them, which is
important for improving quality and reducing costs. Design of experiments (DoE), which repeatedly explores thousands of causes through
controlled experiments, is often too time-consuming and costly. Manufacturing experts rely on their domain knowledge to detect key
factors that may affect quality and then run
DoEs based on these factors. Advances in big data analytics and machine learning enable the detection of critical factors that effectively
impact quality and yield. This, combined with domain knowledge, enables rapid detection of root causes of failures. However,
there are some unique data science challenges in manufacturing.
(1) Unequal costs of false alarms and false negatives. When calculating accuracy, it must be recognized that false alarms
and false negatives may have unequal costs. Suppose a false negative is a bad part/instance that was wrongly predicted to
be good. Additionally, assume that a false alarm is a good part that was incorrectly predicted as bad. Assuming further that
the parts produced are safety critical, incorrectly predicting that bad parts are good (false negatives) can put human lives
at risk. Therefore, false negatives can be much more costly than false alarms. This trade-off needs to be considered when
translating business goals into technical goals and candidate evaluation methods.
Excitation system ABB module DSQC1015
Excitation system ABB module DSQC1000
Excitation system ABB module DSPX3221
Excitation system ABB module DSPU131 3BSE000355R1
Excitation system ABB module DSPU120
Excitation system ABB module DSPC452 57310303-A
Excitation system ABB module DSPC406
Excitation system ABB module DSPC406
Excitation system ABB module DSPC365
Excitation system ABB module DSPC3221
Excitation system ABB module DSPC3122
Excitation system ABB module DSPC3121
Excitation system ABB module DSPC3001
Excitation system ABB module DSPC174 3BSE005461R1
Excitation system ABB module DSPC174
Excitation system ABB module DSPC173
Excitation system ABB module DSPC172H
Excitation system ABB module DSPC172H
Excitation system ABB module DSPC172-2
Excitation system ABB module DSPC172
Excitation system ABB module DSPC172
Excitation system ABB module DSPC171 57310001-CC
Excitation system ABB module DSPC171
Excitation system ABB module DSPC170H
Excitation system ABB module DSPC170
Excitation system ABB module DSPC170
Excitation system ABB module DSPC157
Excitation system ABB module DSPC155
Excitation system ABB module DSPC154
Excitation system ABB module DSPC153
Excitation system ABB module DSPC-150
Excitation system ABB module DSPB120
Excitation system ABB module DSPB112
Excitation system ABB module DSPB110
Excitation system ABB module DSPA110
Excitation system ABB module DSO14
Excitation system ABB module DSMD113 5736045-N/1
Excitation system ABB module DSMD113
Excitation system ABB module DSMD112
Excitation system ABB module DSMD110
Excitation system ABB module DSMC112 57360001-HC
Excitation system ABB module DSMC112
Excitation system ABB module DSMB340
Excitation system ABB module DSMB178
Excitation system ABB module DSMB176
Excitation system ABB module DSMB175 57360001-KG
Excitation system ABB module DSMB175 57360001-KG
Excitation system ABB module DSMB-175
Excitation system ABB module DSMB175
Excitation system ABB module DSMB173
Excitation system ABB module DSMB151
Excitation system ABB module DSMB144
Excitation system ABB module DSMB137
Excitation system ABB module DSMB133 57360001-CY
Excitation system ABB module DSMB133
Excitation system ABB module DSMB127 57360001-HG
Excitation system ABB module DSMB127
Excitation system ABB module DSMB-126A
мы организуем фото на складе, чтобы подтвердить
чтобы вернуть их вам. Конечно, мы ответим на ваши озабоченности как можно скорее.
Reviews
There are no reviews yet.