Description
HE700GEN200C General Electric
высотой 3U, расположенный в раме управления под DSPX.
волоконно – оптический разъем на передней панели и передаются в модуль обнаружения заземления.
ABB: Запасные части для промышленных роботов серии DSQC, Bailey INFI 90, IGCT, например: 5SHY6545L0001 AC1027001R0101 5SXE10 – 0181, 5SHY3545 L0009, 5SHI3545L0010 3BHB013088 R0001 3BHE009681R0101 GVC750BE101, PM866, PM861K01, PM864, PM510V16, PPD512, PPPD113, PP836A, P865A, 877, PPP881, PPPP885, PPSL500000 4 3BHL00390P0104 5SGY35L4510 и т.д.
General Electric: запасные части, такие как модули, карты и приводы. Например: VMVME – 7807, VMVME – 7750, WES532 – 111, UR6UH, SR469 – P5 – HI – A20, IS230SRTDH2A, IS220PPDAH1B, IS215UCVEH2A, IC698CPE010, IS200SRTDH2ACB и т.д.
Система Bently Nevada: 350 / 3300 / 1900, предохранительные зонды и т.д., например: 3500 / 22M, 3500 / 32, 3500 / 15, 3500 / 23500 / 42M, 1900 / 27 и т.д.
Системы Invis Foxboro: Серия I / A, управление последовательностью FBM, трапециевидное логическое управление, обработка отзыва событий, DAC,
обработка входных / выходных сигналов, передача и обработка данных, такие как FCP270 и FCP280, P0904HA, E69F – TI2 – S, FBM230 / P0926GU, FEM100 / P0973CA и т.д.
Invis Triconex: Модуль питания, модуль CPU, модуль связи, модуль ввода – вывода, например 300830937214351B, 3805E, 831235114355X и т.д.
Вудворд: контроллер местоположения SPC, цифровой контроллер PEAK150, например 8521 – 0312 UG – 10D, 9907 – 149, 9907 – 162, 9907 – 164, 9907 – 167, TG – 13 (8516 – 038), 8440 – 1713 / D, 9907 – 018 2301A, 5466 – 258, 8200 – 226 и т.д.
Hima: модули безопасности, такие как F8650E, F8652X, F8627X, F8678X, F3236, F6217, F6214, Z7138, F8651X, F8650X и т.д.
Honeywell: Все платы DCS, модули, процессоры, такие как: CC – MCAR01, CC – PAIH01, CC – PAIH02, CC – PAIH51, CC – PAIX02, CC – PAON01, CC – PCF901, TC – CR014, TC – PD011, CC – PCNT02 и т.д.
Motorola: серии MVME162, MVME167, MVME172, MVME177, такие как MVME5100, MVME5500 – 0163, VME172PA – 652SE, VME162PA – 344SE – 2G и другие.
Xycom: I / O, платы VME и процессоры, такие как XVME – 530, XVME – 674, XVME – 957, XVME – 976 и т.д.
Коул Морган: Сервоприводы и двигатели, такие как S72402 – NANA, S6201 – 550, S20330 – SRS, CB06551 / PRD – B040SSIB – 63 и т. Д.
Bosch / Luxer / Indramat: модуль ввода / вывода, контроллер PLC, приводной модуль, MSK060C – 0600 – NN – S1 – UP1 – NNN, VT2000 – 52 / R900033828, MHD041B – 144 – PG1 – UN и т.д.
(5) Perform predictive maintenance, analyze machine operating conditions, determine the main
causes of failures, and predict component failures to avoid unplanned downtime.
Traditional quality improvement programs include Six Sigma, Deming Cycle, Total Quality Management (TQM), and Dorian Scheinin’s
Statistical Engineering (SE) [6]. Methods developed in the 1980s and 1990s are typically applied to small amounts
of data and find univariate relationships between participating factors. The use of the MapReduce paradigm to simplify data processing in
large data sets and its further development have led to the mainstream proliferation of big data analytics [7]. Along with the development of
machine learning technology, the development of big data analytics has provided a series of new tools that can be applied to manufacturing
analysis. These capabilities include the ability to analyze gigabytes of data in batch and streaming modes, the ability to find complex multivariate
nonlinear relationships among many variables, and machine learning algorithms that separate causation from correlation.
Millions of parts are produced on production lines, and data on thousands of process and quality measurements are collected for them, which is
important for improving quality and reducing costs. Design of experiments (DoE), which repeatedly explores thousands of causes through
controlled experiments, is often too time-consuming and costly. Manufacturing experts rely on their domain knowledge to detect key
factors that may affect quality and then run
DoEs based on these factors. Advances in big data analytics and machine learning enable the detection of critical factors that effectively
impact quality and yield. This, combined with domain knowledge, enables rapid detection of root causes of failures. However,
there are some unique data science challenges in manufacturing.
(1) Unequal costs of false alarms and false negatives. When calculating accuracy, it must be recognized that false alarms
and false negatives may have unequal costs. Suppose a false negative is a bad part/instance that was wrongly predicted to
be good. Additionally, assume that a false alarm is a good part that was incorrectly predicted as bad. Assuming further that
the parts produced are safety critical, incorrectly predicting that bad parts are good (false negatives) can put human lives
at risk. Therefore, false negatives can be much more costly than false alarms. This trade-off needs to be considered when
translating business goals into technical goals and candidate evaluation methods.
MECS UTX1010 Wafer robot control system
MECS CS-1000 Wafer robot control system
TERADYNE A1004-00003 398-723-00 Analog input module
TRAFOTEK CHK0520 Ampere output reactor
Sime-Stromag 4205(405227) Control module
SIEMENS 6SE7022-6EC61-Z Vector control converter compact device
SIEMENS 6FC5210-0DF31-2AA0 power module
Siemens 6FC5203-0AF02-0AA0 OP012 Key panel
SIEMENS 6FC5103-0AB03-0AA2 Operating panel
SIEMENS 6ES7416-3ES06-0AB0 Analog input module
SIEMENS 6ES7414-3XM05-0AB0 DCS module
SIEMENS 6ES7318-3EL00-0AB0 Central processing unit
SIEMENS 6ES5948-3UR23 Central processing unit
SIEMENS 6DD2920-0AB0 TS12 module
SIEMENS 1FK6084-6AZ21-9ZZ9-ZS05 Servo-synchronous motor
Seidel MV65WKS-CE310/22PB Servo drive module
SAGEMCOM 252721117AC Processor module
SAGEMCOM 252721013AF PLC function module
SAGEMCOM 252720938AB Main interface board
Saftronics EZ6-40 Temperature transmitter
Rolls-Royce H1127.0101 Marine controller
REXROTH TV-3000HT-PUMF Servo controller
REXROTH RAC-2.2-200-460-A00-W1 Drive controller
Rexroth DKC02.3-200-7-FW Amplifier drive controller
RADISYS EPC-16 Embedded controller
CG6060/32-4TE1 NMS Control system
NACHI BUY222 Servo amplifier
N7K-M148GT-11L CISCO Ethernet module
MHD093C-058-PG1-AA servomotor
MARPOSS E9066 Amplifier for flat panel liquid crystal display
DDLS 200/200.1-50-M12 50125767 LEUZE Optical data transmission
LEYBOLD SV40BI Rotary vane pump
DDLS 200/200.2-50-M12 50125768 LEUZE Optical data transmission
KUKA KPS-600/20-ESC Power supply unit
KROHNE KDB-FT1600 flowmeter
INICTO3A ABB Computer transmission module
IC697CPX935 Single slot PLC CPU
HoloTrak IS8500 232/422 Bar code scanner
HIMA H51q-HRS B5233-2 997205233 Central control unit
B&R HCMCO3MC-1A processor
FOXBORO ZCP270 Control processor
P0973LN FOXBORO Switch gateway
FOXBORO CP60 Control processor
FOXBORO CP40B Digital output module
Force Computers SPARC CPU-2CE/16 VME single-board computer
ENI GHW-12Z RF Generator
BOSCH SF-A4.0125.015 14.057 servomotor
BOSCH SE110 0608830109 Bosch analog servo
GE VME64 BK698CPA15B0 Controller module card
BAUMULLER BKF12/120/400/2002 Built-in power converter
ABB UNS4881b.V4 3BHE009949R0004 Excitation system
1394-SR9A Servo controller
1394-SJT22-A Turbocharging system module
мы организуем фото на складе, чтобы подтвердить
чтобы вернуть их вам. Конечно, мы ответим на ваши озабоченности как можно скорее.
Reviews
There are no reviews yet.