Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Figure 4 Tool Framework
2.3Smart component creation
Call the Rotator component: This component is used to allow the rotatable grinding rotor to rotate during simulation to simulate the real grinding scene. In the
parameters of the Rotator component, set the reference to object, the reference object to the frame l, and the object to a copy of the rotor. (2) The rotary grinding rotor
can be rotated, and the speed is l20mm/s (the speed of the grinding head will affect the quality of the finished product) ), the reference center axis is: axis (based on frame
l, centerpoint x, y,: set to 0, 0, 0, Axis set x, y,: 0, 0, l000mm).
Call the Attach component: This component is used to allow the rotatable grinding rotor to be integrated with the tool body. When the tool body is installed
on the flange, it can follow the movement of the flange. In the parameters of the Attach component, set the sub-object to be a copy of the rotor (2) for the rotatable
polishing rotor, and the parent object is the tool body of a copy of the rotor. The offset and orientation are
based on the offset of point B relative to the origin. For setting, you can use the measurement tool in Robotstudio software to measure, and then set the parameters
after measurement.
Verification: Install a copy of the rotor tool body onto the robot flange, and then click Execute in the Attach component. You can observe whether the position of the
rotatable grinding rotor is correct at this time. If there is a deviation, adjust the position in time, as shown in the figure. 5 shown.
Figure 5 Tool installation
2.4 Create tool coordinate system
Use the six-point method to create the tool coordinate system Too1data on the robot teach pendant at the center of the rotor. Change the tool coordinate
system to Too1data in the basic options. At this time, click on the robot manual linear and you can drag the robot to move linearly at will.
2.5 Creating trajectories and programming
Determine the trajectory: According to the requirements of the work task, design the grinding trajectory around the workpiece and determine the trajectory
points and transition points required for the grinding trajectory. The grinding action process is shown in Figure 6.
Setting I/O and programming: Yalong IY-l3-LA industrial robot deburring and grinding system control and application equipment adopts 0sDC-52 6/o
communication board, the address is 10, Do1 is the digital output signal, the address is 1 . First set the I/O board, then set the I/O digital output signal Di1,
and then program on the simulation teaching pendant. The procedure is as follows:
PRoCmain()
setDo1: Set the Do1 signal to allow the external grinding rotor to start rotating.
waitTime1: The robot stays in place and does not move, waits for 1s, and lets the polishing rotor turn to the specified speed, transition
MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10. Point jpos10 is used as the starting
point and end point of the robot”s action.
Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10
Move4pL0,v1000,z50,Too1data1: Move straight line grinding to pL0 point
Move4p30,v1000,z50,Too1data1: Move straight line grinding to point p30
Move4p40,v1000,z50,Too1data1: Move straight line grinding to p40 point
Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10
MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10
waitTime1: wait 1s, transition
ResetDo1: Reset the Do1 signal to stop the rotor ENDPRoC
2.6 Simulation design and verification
Simulation design: Create a smart component to input the Di1 signal, and use the Di1 signal to simulate the external polishing start signal to
execute the Rotator component and Attach component of the smart component to achieve the visual effect of rotating and polishing the polishing rotor.
In the workstation logic design, the smart component input Di1 signal is associated with the robot Do1 signal, so that the robot signal Do1 can control
the smart component input Di1 signal, thereby controlling the start and stop of the rotation of the polishing rotor.
Verification: In the program of the teaching pendant, first set the pp command to move to Main, and then set the robot startup mode to automatic.
Click play in the simulation of Robotstudio software to verify whether the trajectory is consistent with the assumption, and optimize the path in time for
problems existing in the simulation.
3Summary and outlook
This design is based on the programming simulation of the Yalong Y4-1360A industrial robot deburring system to control the grinding robot workstation.
It covers aspects such as creating a workstation, setting
up tools, creating smart components, creating tool coordinate systems, creating trajectories, programming, simulation design, and verification. Starting
with it, the polishing simulation of the workstation is realized through the smart component function of Robotstudio software. The animation effect is intuitive
and lifelike, which not only facilitates teaching demonstrations, but also facilitates program debugging, and has application value for both production and teaching.
In the planning and design of the workpiece grinding trajectory, according to the different roughness and grinding amount process requirements of the
workpiece, the rotation speed, feed speed, feed amount, and grinding angle of the grinding rotor are also different. The feed amount can be adjusted in
time according to the on-site conditions. , feed speed, rotor speed, grinding angle and other parameters. After appropriate adjustments, the motion trajectory is written with the
corresponding program on the Robotstudio software to further reduce the possibility of robot collisions and singular points contained in the trajectory
during the actual debugging process. ,Optimize paths and improve debugging efficiency.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
LAM Research 810-072907-005 VTM Breakout PCB
Lam Research 810-068158-014 NODE ROBOT INTERFACE BOARD
LAM Research 810-048219-021 PCB pulse module
LAM Research 810-048219-008 PCB ASSY PULSE Power Board
Lam Research 810-046015-010 VIOP III PCB BOARD
Lam Research 810-046015-009 VIOP PHASE III MODULE CARD Rev. B
LAM Research 810-034817-003 interface Board
LAM Research 810-034806-105 HALO/VCI INTRF-6 PCB Assy
LAM Research 810-034803-002 Assy PCB DIP BreakoutAPMU
LAM Research 810-031183-001 Dual Gas feed W/Toxic Motherboard
LAM Research 810-017388-003 VME Ethernet Address PCB
LAM Research 810-017082-004 16 chanel Heater Control PCB
LAM Research 810-017031-004 ADIO Board
LAM Research 810-017003-004 High Frequency PCB Board
LAM Research 810-015987-101 TCP AUTOTUNE PCB BOARD
LAM Research 810-014025-004 VCI/BICEP II SCALING
LAM Research 810-002895-102 Lonworks Valve Control Node PCB
LAM Research 810-001489-016 Rocker Valve Interface Board
LAM Research 810-000839-003 ESC CURRENT MONITOR
LAM Research 685-151520-102 COMPUTER Ethernet
LAM Research 685-151512-102 Computer EC2 QNX4 Module
LAM Research 685-058616-001 7001A200-2 BDS Receiver
LAM Research 660-900984-009 1513 RF Generator
LAM Research 660-900984-008 RF Generator
LAM Research 660-200788-001 3Kw RF Generator
LAM Research 660-072825-200 MKS LVF3527A-10B-05 27Mhz RF GENERATOR
LAM Research 660-063437-003 AE APEX 2013 M/N 3156113-024 RF Generator
LAM Research 660-063435-003 AE Apex 1513 M/N 3156110-003 RF Generator
LAM Research 660-032596-014 AE APEX 1513 MN 3156110-014 RF Generator
LAM Research 63-431842-00 Controller
LAM Research 63-431069-00 controller
LAM Research 61-420450-00 Controller
LAM Research 605-707109-012 VME-LTNI-S5 Network Interface Module
LAM Research 605-707109-002 VME-LTNI-S4 SEMICONDUCTOR BOARD
LAM Research 605-109114-004 V7668A-132L00W04 Single Board Computer
LAM Research 605-109114-003 V7668A Board
LAM Research 605-109114-002 Single Board Computer
LAM Research 605-109114-001 V7668A-131000 4-Port Gigabit Ethernet Card Module
LAM Research 605-099141-004 MVME 2604 712 I/O Board
LAM Research 605-097209-003 Watlow HAL Board
LAM Research 605-064676-007 V7668A-132L00W01 SBC Board
LAM Research 605-064676-006 V7668A-132L00 4-Port Gigabit Ethernet Board
Lam Research 605-064676-005 GE FANUC EMBEDDED SYSTEMS VME 7671
LAM Research 605-064676-003 GE VME 7671 SBC Board
RELIANCE O-57442 Data Highway Plus Interface module
RELIANCE O-57441 Automate Modbus Plus I/O Module
RELIANCE O-57440 Ethernet Network Interface module
RELIANCE O-57435 AutoMax 7010 processor module
RELIANCE O-57431 AutoMax processor modules
RELIANCE O-57430 Processor module
RELIANCE O-57428 Toledo Scale Interface Modul
RELIANCE O-57423 Automax Memory DCS Module
RELIANCE O-57420 5-24 VDC Output Module
RELIANCE O-57419- 5-24 VDC Input Module
Reviews
There are no reviews yet.