Description
hardware flow control. It is an ideal choice in the field of industrial automation.
user experience
Secondly, if power system engineers are to consider the convenience and speed of using the product in the future, operability needs to be improved while ensuring stability.
This requires a simple self-service system and an operation interface with good visual effects that can meet the needs of users. Some operating habits and other aspects
* cut costs
Furthermore, since there are many nodes in the power system, the same product needs to be deployed on many nodes. Then when the quantity of required products increases,
cost issues will inevitably be involved. How to solve the research and development, construction and installation of products and better reduce operating expenses is also a major issue that ABB needs to consider.
Implementation of communication between Omron vision system and ABB industrial robot
introduction
In modern production processes, vision systems are often used to measure and identify products, and then the results are transmitted to industrial robots for work
through communications . In this process, communication settings are very important. This article analyzes the communication implementation process between the Omron
FH-L550 vision system and ABB industrial robots. The main task is to enable the vision system to provide data detection results for ABB industrial robots, and the industrial robots
perform related operations based on the data results. This article mainly discusses the entire process of visual system communication transmission implementation.
1Ethernet-based communication settings in vision software
The main communication methods of Omron FH-L550 vision system controller are as follows [2], namely: parallel communication, PLCLINK communication, Ethernet
communication, EtherCAT communication, and protocol-free communication. These five communication methods have their own characteristics in the communication process.
In modern equipment, Ethernet communication
(Ethernet communication) is the most common, so this article uses the Ethernet communication method as an example to analyze and explain.
First, select the “Tools” option in the main interface, select the “System Settings” menu (Figure 1), after entering the “System Settings” menu, click the “Startup Settings” option,
and select the “Communication Module” tab (Figure 2 ), after completing the above settings, return to the main interface to save the settings (Figure 3). Finally, select the function
menu to perform system restart settings, and wait for the system to complete the restart before proceeding to the next step.
After the system restarts, click the “System Settings” menu again and select the “Ethernet (No Protocol (UDP))” option (Figure 4). In this option, there will be parameter settings
such as IP address and port. What needs to be noted here are the two IP address parameters. The parameters in “Address Setting 2” need to be filled in. The information that needs
to be filled in includes the IP address of the vision controller, subnet mask, default gateway and DNS server.
In the port number setting of “Input/Output Settings” at the bottom of the menu, set the port number for data input with the sensor controller. Note that the port number should
be the same as the host side, and finally complete the settings and corresponding data saving work.
2ABB industrial robot communication settings
First, configure the WAN port IP address for the ABB industrial robot. Select the control panel in the teach pendant, then select configuration, then select communication in
the theme, click IPSetting, set the IP information and click “Change” to save the IP information.
Next, use the SocketCreate robot command to create a new socket using the streaming protocol TCP/IP and assign it to the corresponding variable (Figure 5). Then
use the SocketConnect command to connect the socket to the remote computer. After the communication connection is completed, it is necessary to send and receive
information from the visual system. To send information, use the SocketSend instruction to send data instructions to the remote computer. After the vision system collects
information and makes judgments, the industrial robot system will receive data from the remote computer. The data reception is completed using the
SocketReceive instruction. This instruction stores the data in the corresponding string variable while receiving the data. Useful information needs to be extracted from the
received data information, which requires StrPart to find the specified character position instruction, extract the data at the specified position from the string, and assign the
result to a new string variable. Finally, when the socket connection is not in use, use SocketCloSe to close it.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
WOODWARD 8440-1301
WOODWARD 8440-2088
WOODWARD 8440-1936
WOODWARD 8440-2150
WOODWARD 8440-1947
WOODWARD 8440-1809
WOODWARD 8440-2152
WOODWARD 8440-1936
WOODWARD 8440-1884
WOODWARD 8440-1868
WOODWARD 8440-1952
WOODWARD 8440-1878
8440-2222 – Woodward’s easYgen
WOODWARD 8200-203- ProTech 203 overspeed protection
WOODWARD 8200-508
WOODWARD 8200-314 – Digital Driver Board
Woodward Rotary actuators | VBR Turbine Partners 8200-188
WOODWARD 8200-1204 – LINKnet HT AIO
WOODWARD 8200-224 – Servo Position Controller
WOODWARD Governor 8200-150
WOODWARD 8200-226
Woodward 9907-205 MSLC/DSLC Hand Held Programmer
WOODWARD 8200-507 Steam Turbine Digital Governor
WOODWARD 8200-1300
WOODWARD 8200-1302 – 505D Digital Governor Turbine Control
Woodward 505D Digital Speed Governing Turbine Controller 8200-1502
WOODWARD 8200-1508
WOODWARD 8200-1350 Flex500- Turbines
WOODWARD 8200-1301-505D Digital Governor Turbine Control
WOODWARD 8200-1310 Turbine Digital Control
WOODWARD 5464-050 Digital Microprocessor Controller
5466-258 | 5466-258 Woodward | Simplex Discrete I/O Module
WOODWARD 5464-674 Digital Microprocessor Controller
WOODWARD 5464-738
WOODWARD microgrid digital control 5464-552
WOODWARD 5464-843
WOODWARD 5464-331 Digital Microprocessor Controller
WOODWARD 5464-333- Thermocouple input module available in stock
WOODWARD 5464-011
WOODWARD 5464-365A
WOODWARD 5464-365 Module digital speed sensor
WOODWARD 5464-330
WOODWARD 5464-218
Best WOODWARD 5464-643 discrete input (48 channels)
WOODWARD 5464-654
WOODWARD 5464-850
WOODWARD 5464-545
WOODWARD 5464-414
“WOODWARD 9905-003”
“WOODWARD EASYGEN-1000”
“WOODWARD EASYGEN-320”
“WOODWARD ESAYGEN-1000”
“WOODWARD 9907-018”
“WOODWARD 9907-163”
woodward 9907-163
Reviews
There are no reviews yet.