Sale!

DS200DCFBG1BLC Boards & Turbine Control Module

Original price was: $1,888.00.Current price is: $1,688.00.

МодельDS200DCFBG1BLC

Первоначальная гарантия на один год.
DS200DCFBG1BLC Параметры

DS200DCFBG1BLC Размер 30 * 20 * 30
DS200DCFBG1BLC Вес 2 кг

Контактное лицо: г – н Рай

WeChat: 17750010683

WhatsApp: + 86 177500 10683

Электронная почта 3221366881@qq.com

Category:

Description

DS200DCFBG1BLC Boards & Turbine Control Module
DS200DCFBG1BLC Boards & Turbine Control Module
DS200DCFBG1BLC Boards & Turbine Control Module Product details:

DS200DCFBG1BLC Technical Manual

DS200DCFBG1BLC Weight:1.8KG
DS200DCFBG1BLC Size: 20* 20 * 10cm
DS200DCFBG1BLC instructions
DS200DCFBG1BLC PDF
DS200DCFBG1BLC  – это панель связи возбудителя для передачи данных между контроллерами.
666666 Описание функций
ISBus – это защищенный интерфейс связи GE, используемый для передачи данных между контроллерами M1, M2 и C возбудителя. EISB – это модуль с одним слотом и высотой 3U, расположенный в раме управления под DSPX.
DS200DCFBG1BLC  Сигналы тока и напряжения от магнитного поля генератора (включая, при необходимости, возбудитель) принимаются через волоконно – оптический разъем на передней панели и передаются в модуль обнаружения заземления.
Применение данных
У EISB нет светодиодных индикаторов, трамплинов или предохранителей.
Соединитель
Следующие волоконно – оптические разъемы расположены на передней панели платы и используются для приема и передачи сигналов преобразования частоты DS200DCFBG1BLC :
• Ввод напряжения постоянного тока на месте для генераторов с пластиной EDCF
• Ввод тока на панели EDCF в аэропорту постоянного тока
Ввод напряжения возбудителя EDCF (необязательно)
Ввод тока в возбудитель EDCF (необязательно)
• Ввод напряжения в детектор заземления
• Переключатель сброса напряжения на выходе из приемника заземления также вогнут за отверстие в нижней части передней панели
Contact person: Mr. Lai
Mobil:17750010683
WeChat:17750010683
WhatsApp:+86 17750010683

Figure 4 Tool Framework

2.3Smart component creation

Call the Rotator component: This component is used to allow the rotatable grinding rotor to rotate during simulation to simulate the real grinding scene. In the
parameters of the Rotator component, set the reference to object, the reference object to the frame l, and the object to a copy of the rotor. (2) The rotary grinding rotor
can be rotated, and the speed is l20mm/s (the speed of the grinding head will affect the quality of the finished product) ), the reference center axis is: axis (based on frame
l, centerpoint x, y,: set to 0, 0, 0, Axis set x, y,: 0, 0, l000mm).

Call the Attach component: This component is used to allow the rotatable grinding rotor to be integrated with the tool body. When the tool body is installed
on the flange, it can follow the movement of the flange. In the parameters of the Attach component, set the sub-object to be a copy of the rotor (2) for the rotatable
polishing rotor, and the parent object is the tool body of a copy of the rotor. The offset and orientation are
based on the offset of point B relative to the origin. For setting, you can use the measurement tool in Robotstudio software to measure, and then set the parameters
after measurement.

Verification: Install a copy of the rotor tool body onto the robot flange, and then click Execute in the Attach component. You can observe whether the position of the
rotatable grinding rotor is correct at this time. If there is a deviation, adjust the position in time, as shown in the figure. 5 shown.
Figure 5 Tool installation

2.4 Create tool coordinate system

Use the six-point method to create the tool coordinate system Too1data on the robot teach pendant at the center of the rotor. Change the tool coordinate
system to Too1data in the basic options. At this time, click on the robot manual linear and you can drag the robot to move linearly at will.

2.5 Creating trajectories and programming

Determine the trajectory: According to the requirements of the work task, design the grinding trajectory around the workpiece and determine the trajectory
points and transition points required for the grinding trajectory. The grinding action process is shown in Figure 6.
Setting I/O and programming: Yalong IY-l3-LA industrial robot deburring and grinding system control and application equipment adopts 0sDC-52 6/o
communication board, the address is 10, Do1 is the digital output signal, the address is 1 . First set the I/O board, then set the I/O digital output signal Di1,
and then program on the simulation teaching pendant. The procedure is as follows:

PRoCmain()

setDo1: Set the Do1 signal to allow the external grinding rotor to start rotating.

waitTime1: The robot stays in place and does not move, waits for 1s, and lets the polishing rotor turn to the specified speed, transition

MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10. Point jpos10 is used as the starting
point and end point of the robot”s action.

Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10

Move4pL0,v1000,z50,Too1data1: Move straight line grinding to pL0 point

Move4p30,v1000,z50,Too1data1: Move straight line grinding to point p30

Move4p40,v1000,z50,Too1data1: Move straight line grinding to p40 point

Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10

MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10

waitTime1: wait 1s, transition

ResetDo1: Reset the Do1 signal to stop the rotor ENDPRoC

2.6 Simulation design and verification

Simulation design: Create a smart component to input the Di1 signal, and use the Di1 signal to simulate the external polishing start signal to
execute the Rotator component and Attach component of the smart component to achieve the visual effect of rotating and polishing the polishing rotor.
In the workstation logic design, the smart component input Di1 signal is associated with the robot Do1 signal, so that the robot signal Do1 can control
the smart component input Di1 signal, thereby controlling the start and stop of the rotation of the polishing rotor.

Verification: In the program of the teaching pendant, first set the pp command to move to Main, and then set the robot startup mode to automatic.
Click play in the simulation of Robotstudio software to verify whether the trajectory is consistent with the assumption, and optimize the path in time for
problems existing in the simulation.

3Summary and outlook

This design is based on the programming simulation of the Yalong Y4-1360A industrial robot deburring system to control the grinding robot workstation.
It covers aspects such as creating a workstation, setting
up tools, creating smart components, creating tool coordinate systems, creating trajectories, programming, simulation design, and verification. Starting
with it, the polishing simulation of the workstation is realized through the smart component function of Robotstudio software. The animation effect is intuitive
and lifelike, which not only facilitates teaching demonstrations, but also facilitates program debugging, and has application value for both production and teaching.

In the planning and design of the workpiece grinding trajectory, according to the different roughness and grinding amount process requirements of the
workpiece, the rotation speed, feed speed, feed amount, and grinding angle of the grinding rotor are also different. The feed amount can be adjusted in
time according to the on-site conditions. , feed speed, rotor speed, grinding angle and other parameters. After appropriate adjustments, the motion trajectory is written with the
corresponding program on the Robotstudio software to further reduce the possibility of robot collisions and singular points contained in the trajectory
during the actual debugging process. ,Optimize paths and improve debugging efficiency.

336A4940CSP23 IS220PDIOH1A GE   I/O pack module
3BSE017429R1 NMTU-21C  ABB  Digital Output
PR6424/006-030+CON021  EPRO  Eddy Current Sensor
MRP643486 IS200VSVOH1BDC  GE   VME Servo Control Card Mark VI
05701-B-0376  HONEYWELL  HIGH INTEGRITY CARD
ALR121-S00   YOKOGAWA  Serial Communication Module
VMIVME-7614-132350-017614-132 D   GE  Turbine Control PCB board
MMS6110  EPRO  Axial vibration measurement module
3VWWZ036CD001  GE
05701-A-0330  HONEYWELL  HIGH INTEGRITY CARD
PI3381  TRICONEX   Pulse input card
531X307LTBAJG1 GE  LAN Terminal Board 531X Series
IC660BBD101 IC660EBD101  GE  Input/Output Block
DS200LDCCH1AGA  GE  Drive Control/LAN Communications Board
P0922YU FPS400-24 FOXBORO  Power Supply
IS210AEBIH3BED  GE
IOP114  METSO  TC/MV INPUT MODULE REV D/E D526316
G2010 A 10.4ST ABB Genera Industrial Panel Computer
SAC-RL100-M11T  AUTOTECH CONTROLS  encoder
CP451-50  YOKOGAWA  Processor Module
EST0240Z05WBX00 YAMATAKE  touch screen
UAC389AE02 HIEE300888R0002 ABB  PCB BOARD
PM783F 3BDH000364R0002 ABB CPU Module
IPMC761-001  MOTOROLA  Multifunction rear I/O PMC module
81001-450-53-R  MITSUBISHI  DRIVE MODULE
SR745-W2-P5-G5-HI-A  GE  transformer management relay
1756-IF16A  Allen-Bradley   ControlLogix module
IPMC7616E-002  MOTOROLA  Circuit Card Assembly
WR-D4007  RELIANCE  POWER SUPPLY CARD II
PM3326B-6-1-2-E 80026-529-01  PIONEER MAGNETICS  POWER SUPPLY
IC693PWR322F GE standard power supply
SCXI-1160 NI  General Purpose Relay Switch Module
2481  TRICONEX 2481  Output module substrate
2401  TRICONEX 2401  communication module
2101  TRICONEX 2101  Digital Input Output Module
216EA62 1MRB150083R1F 1MRB178066R1F ABB Analog Input
560CMU05 ABB Communication unit (CMU) for RTU560
ANC-100E AN-X2-AB-DHRIO  PROSOFT  Ethernet DH+ converter
8610-FT-NA  EATON    NON-ARCING FIELD TERMINAL
SCM-1  DEIF  encoder

Reviews

There are no reviews yet.

Be the first to review “DS200DCFBG1BLC Boards & Turbine Control Module”

Your email address will not be published. Required fields are marked *