Description
Experience of using FBP bus adapter in intelligent motor controller:
(1) Fieldbus can save a lot of costs
From the installation stage, only one communication cable is used to provide power and communication to the entire network. Compared with the point-to-point control method, a large number of cables, bridges, etc. are saved, which not only shortens
the installation time, but also reduces the cost. installation fee.
From a control point of view, the use of network communication and “soft” I/O methods saves I/O modules, especially analog modules. For example, for workstations such as intelligent motor controller UMC22 or frequency converters, start/stop, start mode,
acceleration/deceleration and other commands; parameters such as voltage, current , temperature, running time, etc. can all be realized from bus network communication.
(2) The equipment failure rate is greatly reduced, diagnosis is convenient, and elimination is rapid.
Because the FBP system uses only one communication cable to control the entire equipment network, the equipment failure rate is greatly reduced. The use of data communication to control each station not only greatly reduces the number of cables
in the traditional point-to-point method, but also greatly reduces fault links and further improves system stability.
The centralized control of the motor through the FBP system is very effective, which greatly facilitates the diagnosis of equipment faults. For example, when a certain intelligent motor controller UMC22 fails, not only can the alarm information be seen in the
central control room, but the alarm information can also be obtained from the operation panel of the UMC22, which is convenient and fast.
Engineering practice shows that 80% of bus faults occur in the bus cable itself, and the FBP system provides pre-installed cables with metal contacts to minimize the possibility of faults caused by cable problems.
(3) System monitoring is more convenient and intelligent.
The FBP system makes it more convenient for operators to access the working status of field stations and adjust control parameters at any time. Such as motor current, temperature and other parameters to ensure the normal operation of the motor.
(4) Plug and play (P&P) system expansion.
Because FBP adopts a “hand-in-hand” connection method, users can expand and insert the required monitoring objects in any link as needed.
Application 2 of ABB FBP bus adapter in intelligent motor controller:
Figure 5 Application of FBP and PDQ22 in smart motors
In Figure 5, the FBP system uses the PDQ22 device integrated with the Profibus protocol. Profibus and other fieldbuses use the standard RS 485 method. Each segment is limited to 32 master/slave stations. If more devices need to be connected, additional
devices are required. relay. Using PDQ22, you can connect 4 devices each to the Profibus DP bus, but as a node in the bus, you can save the number of bus nodes. Has the following characteristics:
Up to 4 FBP adapters can be used at one bus node;
Reliable system concept: detect equipment faults and indicate bus and equipment status;
Simple system integration: free access to parameters, operating and diagnostic data of connected devices; integrated maintenance management.
5. ABB FBP bus adapter is used in software configuration of intelligent motor controllers
PS501 programming software is used in this system. It uses ABB Codesys V2.3 programming software as the development environment, complies with the international standard of ICE61131-3, and can support statement list (IL), ladder diagram (LD),
and function block (FBD). , Sequential Function Chart (SFC), Structured Text (ST), and Continuous Function Chart (CFC) six programming languages. The complete setup of the AC500 system can
be completed, including all fieldbuses and interfaces, as well as comprehensive diagnostic functions, alarm handling, integrated visualization functions and open data interfaces.
Figure 6 FBP bus adapter configuration diagram in PS501 software
Figure 7 UMC22 monitoring interface (PS501 visualization function)
Excitation system ABB module SB822
Excitation system ABB module SB822
Excitation system ABB module SB821
Excitation system ABB module SB808F
Excitation system ABB module SB808F
Excitation system ABB module SB512
Excitation system ABB module SB512
Excitation system ABB module SB510 3BSE000860R1
Excitation system ABB module SB510
Excitation system ABB module SB510
Excitation system ABB module SAM3.0
Excitation system ABB module SAFT164
Excitation system ABB module SAFT-123-PAC
Excitation system ABB module SAFT112POW
Excitation system ABB module SAFT111POW
Excitation system ABB module SAFT110
Excitation system ABB module SAFT110
Excitation system ABB module SAFT103
Excitation system ABB module SAFT103
Excitation system ABB module SA9923A-E
Excitation system ABB module SA9923A-E
Excitation system ABB module SA920S
Excitation system ABB module SA920N
Excitation system ABB module SA920N
Excitation system ABB module SA920B
Excitation system ABB module SA911S
Excitation system ABB module SA911N
Excitation system ABB module SA911B
Excitation system ABB module SA910S
Excitation system ABB module SA811F-Z
Excitation system ABB module SA811F 3BDH000013R1
Excitation system ABB module SA811F
Excitation system ABB module SA811F
Excitation system ABB module SA811F
Excitation system ABB module SA802F
Excitation system ABB module SA801F
Excitation system ABB module SA801F
Excitation system ABB module SA610
Excitation system ABB module SA168 3BSE003389R1
Excitation system ABB module S900-BI100
Excitation system ABB module S503X
Excitation system ABB module S503X
Excitation system ABB module S200-TB3T
Excitation system ABB module S200-TB3
Excitation system ABB module S200-PS13
Excitation system ABB module S200-IR8
Excitation system ABB module S-113N 3BHB018008R0101
Excitation system ABB module S-113N 3BHB018008R0001
Excitation system ABB module s-113N 3BHB018008R0001
Excitation system ABB module S-093H 3BHB030478R0309
Excitation system ABB module S-093H 3BHB030478R0309
Excitation system ABB module S-076N 3BHB009884R0021
Excitation system ABB module S-073N 3BHB009884R0021
Excitation system ABB module S-073N 3BHB009884R0021
Excitation system ABB module RXTUG 22H 1MRK000592-A
Excitation system ABB module RXPPK 2H 1MRK001615-AA
Excitation system ABB module RXIIK 4 1MRK001643-AA
Excitation system ABB module RXIDK 2H 1MRK000838-HA
Excitation system ABB module RXEDK 2H 1MRK000841-RA
Excitation system ABB module RXDS 4 1MRK000344-A
Excitation system ABB module RX865
Excitation system ABB module RX845
Excitation system ABB module RX835
Excitation system ABB module RX835
Excitation system ABB module RW857F
Excitation system ABB module RW856F
Excitation system ABB module RVC6-5A
Excitation system ABB module RVC6-5A
Excitation system ABB module RTAC-01
Excitation system ABB module RMU811
Excitation system ABB module RMIO-02C
Excitation system ABB module RLY-100
Excitation system ABB module RLM01 3BDZ000398R1
Excitation system ABB module RLM01
Excitation system ABB module RLM01
Excitation system ABB module RLM01
Reviews
There are no reviews yet.