Description
CI867K01 3BSE043660R1 Система возбуждения DCS ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.CI867K01 3BSE043660R1
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;CI867K01 3BSE043660R1Строительная промышленность: коммерческое и промышленное строительство.
2 Leveraging big data tool chains
After the data collected from the manufacturing product value chain is stored in the database, a data analysis system is required to analyze the data.
The manufacturing data analysis system framework is shown in Figure 1. Data is first extracted, transformed, and loaded (ETL) from different
databases into a distributed file system, such as Hadoop Distributed File System (HDFS) or a NoSQL database (such as MongoDB). Next,
machine learning and analytics tools perform predictive modeling or descriptive analytics. To deploy predictive models, the previously mentioned tools
are used to convert models trained on historical data into open, encapsulated statistical data mining models and associated metadata called Predictive
Model Markup Language (PMML), and Stored in a scoring engine. New
data from any source is evaluated using models stored in the scoring engine [9].
A big data software stack for manufacturing analytics can be a mix of open source, commercial, and proprietary tools. An example of a
manufacturing analytics software stack is shown in Figure 2. It is known from completed projects that existing stack vendors do not currently
offer complete solutions. Although the technology landscape is evolving rapidly, the best option currently is modularity with a focus on truly distributed
components, with the core idea of success being a mix of open source and commercial components [10].
In addition to the architecture presented here, there are various commercial IoT platforms. These include GE”s Predix ( www.predix.com ), Bosch”s IoT
suite (www.bosch-iot-suite.com), IBM”s Bluemix ( www.ibm.com/cloud-computing/ ), ABB based on Microsoft Azure IoT services and people platform
and Amazon’s IoT cloud (https://aws.amazon.com/iot). These platforms offer many standard services for IoT and analytics, including identity management and data
security, which are not covered in the case study here. On the other hand, the best approaches offer flexibility and customizability, making implementation
more efficient than standard commercial solutions. But implementing such a solution may require a capable data science team at the implementation site.
The choice comes down to several factors, non-functional requirements, cost, IoT and analytics.
P0400VE FOXBORO
P0400VT FOXBORO
P0400ZG FOXBORO
P0500JX FOXBORO
P0500RG FOXBORO
P0500RU FOXBORO
P0500RY FOXBORO
P0500WX FOXBORO
P0700HU FOXBORO
P0700TT FOXBORO
P0700WB FOXBORO
P0800CE FOXBORO
P0800DA FOXBORO
P0800DB FOXBORO
P0800DC FOXBORO
P0800DG FOXBORO
P0800DO FOXBORO
P0800DV FOXBORO
P0901VK FOXBORO
P0901XT FOXBORO
P0902BM FOXBORO
P0902YU FOXBORO
P0903AA FOXBORO
P0903MU FOXBORO
P0903NQ FOXBORO
P0903NW FOXBORO
P0903ZL FOXBORO
P0903ZN FOXBORO
P0903ZP FOXBORO
P0903ZQ FOXBORO
P0904AK FOXBORO
P0904BH FOXBORO
P0904FH FOXBORO
P0904HA FOXBORO
P0904HB FOXBORO
P0911QB FOXBORO
P0911QB-C FOXBORO
P0911QC-C FOXBORO
P0911QH-A FOXBORO
P0911SM FOXBORO
P0911VJ FOXBORO
P0912CB FOXBORO
P0912CM FOXBORO
P0912XX FOXBORO
P0914XA FOXBORO
P0914ZM FOXBORO
P0916AA FOXBORO
Reviews
There are no reviews yet.