Description
hardware flow control. It is an ideal choice in the field of industrial automation.
In June 2018, Yaskawa (China) Robot Co., Ltd. held a completion ceremony for its third factory in Changzhou. In October, Japan”s FANUC Robotics Chongqing base
project started construction and is expected to be completed in the first half of 2019. After reaching capacity, it will achieve an annual output value of more than 200
million yuan. Local areas compete for new opportunities in high-end manufacturing
From government procurement and local industrial policies, we can see that all regions are competing for new opportunities in digital and intelligent transformation,
and high-end manufacturing, represented by robots, has become the focus of local efforts.
At the CIIE, robot companies received intensive orders. Analysts from the 21st Century Economic Research Institute found that high-end manufacturing, smart
and high-end equipment, new energy vehicles, etc. have become the focus of procurement in the procurement lists of multiple provincial trading groups.
Official data shows that of the US$57.83 billion in intended turnover at the CIIE, the smart and high-end equipment exhibition area had the highest turnover, reaching
US$16.46 billion. Some exhibitors at the exhibition said that they had never received so many large customers from state-owned enterprises and local governments in
one day, and the total order volume far exceeded expectations.
The representative city that focuses on high-end manufacturing is Shanghai, where the service industry accounts for more than 70%. In the “Thirteenth Five-Year
Plan for the Transformation and Upgrading of Shanghai”s Manufacturing Industry” released at the end of 2016, high-end manufacturing is regarded as an important
breakthrough for industrial transformation.
In the past two years, Shanghai”s investment promotion in the field of high-end manufacturing has also been fruitful. A number of major projects such as robots,
new energy vehicles, large aircraft, and integrated circuits have been launched one after another. Take robots as an example. As a carrier of intelligent manufacturing,
Shanghai has gathered domestic and foreign leading robot companies including ABB, KUKA, SIASUN and Xinstar. Currently, robot output accounts for more than 20% of the country”s total.
In the first half of 2018, Shanghai”s non-state-owned economic and industrial investment increased by 32.9% year-on-year, with major projects distributed in various
industries such as auto parts, clothing, and robots. High-end manufacturing projects introduced in Shanghai this year include the Tesla Gigafactory, which plans to
produce 500,000 pure electric vehicles per year , and the
ABB Robotics Gigafactory, which plans to produce 100,000 robots per year. The latter will realize “making robots with robots”. After being put into production in 2020,
the total output of high-end industrial robots made in Shanghai will double.
As a manufacturing hub in the central and western regions, Chongqing is also making continuous efforts in high-end manufacturing. In 2018, Chongqing held the first
China Smart Expo, focusing on smart manufacturing and hoping to build a project exchange and docking
platform in the field of smart manufacturing. In November, Chongqing released “Nine Policy Measures to Reduce the Cost of Manufacturing Enterprises”, which will
reduce the cost of manufacturing enterprises by more than 30 billion yuan each year. Chongqing also supports key enterprises to increase their efforts in intelligent
transformation of equipment, with a maximum subsidy of 5 million yuan for a single project.
In terms of project investment, three of the four major robot families have settled in Chongqing to invest, including ABB from Switzerland, KUKA from Germany, and
FANUC from Japan. At present, there are more than 300 robot companies in Chongqing, and the number of industrial robot companies has exceeded 120.
A mature robot market should have 70 robots per 10,000 jobs. Countries with relatively developed robot applications, such as South Korea, Germany, Japan, etc.,
already have 300 robots per 10,000 people, while China is far lower than the previous one. numbers, let alone compared to developed countries. In 2016, China”s
“Robot Industry Development Plan (2016-2020)” proposed that the density of industrial robots (the number of industrial robots used per 10,000 workers) should reach more than 150 by 2020.
How to support high-end industries locally
Analysts from the 21st Century Economic Research Institute combed through the high-end manufacturing support policies in Shanghai, Chongqing,
Shandong and other places and found that most of them focus on industrial land, fiscal and tax support, etc.
Shanghai has proposed seven safeguard measures: reforming the industrial system and mechanism, coordinating industrial land use,
increasing fiscal and taxation support, promoting the integration of industry and finance, building a talent system, implementing an open development
strategy, and improving the planning and implementation system. Jiangsu implements a high-end equipment research and development catch-up project,
focusing on the development of 13 fields such as electronic industry equipment and intelligent complete sets of equipment.
Zhejiang implements special projects for equipment with major shortcomings, focusing on ten major fields such as rail transit, robots and
intelligent manufacturing equipment.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
1B30035H01 Westinghouse I/O PROCESS CONTROL BASE
1785-BCM Allen-Bradley Backup Communications Module
1771-W Allen-Bradley Field connection arm
R-S108V01-16-24VDC-C10-1 PHOENIX Communication system
AD916CC FOXBORO Programmable logic controller
AD908MF FOXBORO Programmable logic controller
1756-TBNH Allen-Bradley removable terminal block or RTB module
1769-L32CA Allen-Bradley Processor Module
PHARPS32200000 F8-G2B9B3B6 ABB Power Supply
GFD233A 3BHE022294R0101 ABB Competitive Pricing
VMIPCI-5565-110000 VMIC Reflective Memory Interface
PFEA111-20 3BSE028140R0020 ABB Tension Electronics
FBMSSW FOXBORO INVENSYS I/O 32 Channels Module
SDCS-CON-4 3ADT313900R1501 ABB COAT-ROHS CONTROL BOARD
MOX12-P3509 ABSOPULSE POWER SUPPLY
IS200ISBBG2AAB GE Rack type power board
FBM216 P0917TN FOXBORO HART Communication Redundant Input Interface Module
FSE-L003 SCHENCK Front bus controller
301140 pliz safety relays
CPU-30ZBE D143-502-A002 FRCE Communication Module
1746-N2 Allen-Bradley SLC 500 Slot Filler
RDC2 BERGHOF Controller Module
1746-A4 Allen-Bradley SLC 500 I/O Chassis with 4 Slots
30V4060 RELIANCE 3HP 460V AC Drive Version 6 Regulator
1C31116G04 Westinghouse controller
LC100SSP7 LEM 1382 Circuit Board
TU810V1 3BSE013230R1 ABB Compact Module Termination
PPC907BE 3BHE024855R0101 ABB Controller main board
UTLH21 TOSHIBA Controller Module
9907-149 Woodward ProTech 203 Electronic Overspeed Trip Device
HFAS11S TOSHIBA System module
5136-RE2-PCI RELIANCE ELECTRIC INTERFACE MODULE
1756-EN2T Allen-Bradley communication module
MVI69-MNET PROSOFT Modbus TCP/IP Communication Module for CompactLogix
1747-L541 Allen-Bradley SLC 5/04 processor
5X00119G01 19-01-21 Westinghouse Digital quantity input module
5X00121G01 19-01-21 Westinghouse Digital quantity input module
1C31124G01 19-01-21 Westinghouse Digital input module
5X00497G01 19-01-21 Westinghouse The base
1756-RM2 19-01-18 Allen-Bradley ControlLogix Redundancy Module
1746-OW16 19-01-18 Allen-Bradley discrete output module
1X00416H01 WH5-2FF 19-01-18 Westinghouse Process control power module
PSFLT-B2S0151 IDP10-AF1C01F Foxboro I/A Series Pressure Transmitters
MVI56-MCM Allen-Bradley Modbus Communication Module
1756-L73/B Allen-Bradley ControlLogix Controller
TC-PCIC02 HONEYWELL CONTROL INTERFACE MODULE
IK340 HEIDENHAIN Operation station
FBMSVH FOXBORO Ethernet communication module
DSQC658 3HAC025779-001 ABB DeviceNet M/S single
6DD1640-0AH0 Siemens TDC signal assembly
Reviews
There are no reviews yet.