Description
hardware flow control. It is an ideal choice in the field of industrial automation.
In a DC brush motor, the stator is a permanent magnet and the rotor is a wound coil; the magnetism has two poles, which repel each other and attract each other.
Therefore, passing direct current through the rotor coil will allow the rotor to rotate until it reaches the position where the torque is the smallest with the stator. At this
time, due to the commutation of the brushes, the position where the torque was originally the smallest becomes the position where the torque is the largest. Finally,
over and over again, the rotor continues to rotate. .
Brushless DC does not have brushes; at the same time, in brushless DC motors, the stator is a permanent magnet and the rotor is a winding structure.
In brushless DC motors, the stator is a winding and the rotor is a permanent magnet. If the winding is still on the rotor, you have to rely on physical contact to energize
the winding, which does not solve the problem of brush aging. In the brushless DC motor, the winding exists in the stator and has three phase wires; when working, the
input and output currents are successively supplied to the three phase wires to achieve the purpose of commutation. In brushless DC, the electromagnetic force generated by the
rotor and stator is the same as that of brushed DC.
For brushless DC motors, it is not necessarily whether the stator is inside or outside. A motor with a rotor outside and a stator inside is generally
called an external rotor motor. The hub motor is a very special external rotor motor.
Brushless DC motor, why is it classified as AC motor?
This is because when we supply power to the controller of brushless DC and permanent magnet synchronous motors, we supply DC
power, so it is called brushless DC; however, after the DC power is inverted through the motor controller, it communicates with the motor. For the three connected phase lines,
the power supply type changes to AC. Only the changing phase voltage of AC can cause the current on the three phase lines of the motor to continuously reverse direction,
so the motor is classified as an AC motor.
3. Similarities and differences between brushless DC and permanent magnet synchronization
Brushless Direct Current Motor, English BLDC, English full name Brushless Direct Current Motor
Permanent Magnet Synchronous Motor, English PMSM, English full name: Permanent Magnet Synchronous Motor
1336-BDB-SP49D A-B Power connection board
Allen-Bradley 1336-BDB-SP44 PCB Gate Drive Board
1336-BDB-SP70C A-B grid driver board
140SAI94000S Schneider Digital input module
S20360-SRS KOLLMORGEN Control system module
S20660-SRS DANAHER DCS/ distributed control system
IC695CPU320-HS GE CPU module Controller module
MVI56-PDPMV1 PROSOFT Servo drive driver
FOXBORO P0912XX Control system I/O module
IS200DSFCG1AEB printed circuit board
IS200DSFCG1ADB Feedback drive
IS200DSFCG1A driver GE board
IS200DSFCG1ACA printed circuit board
IS200DSCBH1AAA terminal series andboard
IS200DSCBH1A TB series card
IS200DRTDH1ABA Mark VI series printed circuit boards
IS200DRLYH1AED MARK VI GE terminates
IS200DRTDH1A printed circuit board
IS200BICHH1A control board BICH
IS200BAIAH1BCB printed circuit board
IS200AVSCG1A SCR control board
IS200AVIFH1A Bridge interface board
IS200AVGBG1A MARK VI module
IS200ATBAG1AAA I/O board
IS200ATBAG1A I/O terminal board
IS200AEPCH1CCB turbine control module
IS200AEPCH1ABC General Electric board components
IS200AEPCH1A Central module
IS200AEPAH1AFD printed circuit board
IS200AEPAH1AAA turbine control PCB board
IS200AEPAH1A circuit board
IS200AEBMG1AFB analog input module
IS200AEBMG1A Input module
IS200AEBIH1ADC GE MARK VI board
IS200AEADH1A Input/output module
IS200AEAAH1C printed circuit board
IS200AEAAH1AAA Mark VI Printed circuit board
IS200AEAAH1A printed circuit board
IS200ADIIH1AAA ISBUS interface board
Reviews
There are no reviews yet.