Description
hardware flow control. It is an ideal choice in the field of industrial automation.
user experience
Secondly, if power system engineers are to consider the convenience and speed of using the product in the future, operability needs to be improved while ensuring stability.
This requires a simple self-service system and an operation interface with good visual effects that can meet the needs of users. Some operating habits and other aspects
* cut costs
Furthermore, since there are many nodes in the power system, the same product needs to be deployed on many nodes. Then when the quantity of required products increases,
cost issues will inevitably be involved. How to solve the research and development, construction and installation of products and better reduce operating expenses is also a major issue that ABB needs to consider.
Implementation of communication between Omron vision system and ABB industrial robot
introduction
In modern production processes, vision systems are often used to measure and identify products, and then the results are transmitted to industrial robots for work
through communications . In this process, communication settings are very important. This article analyzes the communication implementation process between the Omron
FH-L550 vision system and ABB industrial robots. The main task is to enable the vision system to provide data detection results for ABB industrial robots, and the industrial robots
perform related operations based on the data results. This article mainly discusses the entire process of visual system communication transmission implementation.
1Ethernet-based communication settings in vision software
The main communication methods of Omron FH-L550 vision system controller are as follows [2], namely: parallel communication, PLCLINK communication, Ethernet
communication, EtherCAT communication, and protocol-free communication. These five communication methods have their own characteristics in the communication process.
In modern equipment, Ethernet communication
(Ethernet communication) is the most common, so this article uses the Ethernet communication method as an example to analyze and explain.
First, select the “Tools” option in the main interface, select the “System Settings” menu (Figure 1), after entering the “System Settings” menu, click the “Startup Settings” option,
and select the “Communication Module” tab (Figure 2 ), after completing the above settings, return to the main interface to save the settings (Figure 3). Finally, select the function
menu to perform system restart settings, and wait for the system to complete the restart before proceeding to the next step.
After the system restarts, click the “System Settings” menu again and select the “Ethernet (No Protocol (UDP))” option (Figure 4). In this option, there will be parameter settings
such as IP address and port. What needs to be noted here are the two IP address parameters. The parameters in “Address Setting 2” need to be filled in. The information that needs
to be filled in includes the IP address of the vision controller, subnet mask, default gateway and DNS server.
In the port number setting of “Input/Output Settings” at the bottom of the menu, set the port number for data input with the sensor controller. Note that the port number should
be the same as the host side, and finally complete the settings and corresponding data saving work.
2ABB industrial robot communication settings
First, configure the WAN port IP address for the ABB industrial robot. Select the control panel in the teach pendant, then select configuration, then select communication in
the theme, click IPSetting, set the IP information and click “Change” to save the IP information.
Next, use the SocketCreate robot command to create a new socket using the streaming protocol TCP/IP and assign it to the corresponding variable (Figure 5). Then
use the SocketConnect command to connect the socket to the remote computer. After the communication connection is completed, it is necessary to send and receive
information from the visual system. To send information, use the SocketSend instruction to send data instructions to the remote computer. After the vision system collects
information and makes judgments, the industrial robot system will receive data from the remote computer. The data reception is completed using the
SocketReceive instruction. This instruction stores the data in the corresponding string variable while receiving the data. Useful information needs to be extracted from the
received data information, which requires StrPart to find the specified character position instruction, extract the data at the specified position from the string, and assign the
result to a new string variable. Finally, when the socket connection is not in use, use SocketCloSe to close it.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
SYN5201A-Z V277 3BHB006714R0277 ABB Automatic single-channel synchronizer
RMP420 KONGSBERG controller RCU510 RCU501 RMP201-8
RCU502 KONGSBERG drive RCU510 RCU501 RMP420
PR6423/003-031-CN+CON041 EPRO Vibration sensor
MVI56-PDPMV1 PROSOFT ControlLogix platform compatible module
MCR-UI-UI-NC Phoenix Isolation amplifier
IC755CSW07CDA GE QuickPanel+ Operator terminal
IC200UEX626 GE VersaMax miniature 6-channel analog extension
HC800 ABB HPC800 control processor
CON021 EPRO Sensors and precursors
G123-825-001 MOOG buffer amplifier
CI810B 3BSE020520R1 ABB Communication module
9907-1200 WOODWARD Pressure transducer
A6210 9199-00003 EMERSON Monitoring module
6104-WA-PDPM PROSOFT Gateway of communication
4135A HIMA Safety-related relay amplifier
140XBP01600 Schneider Backplane unit
3BSE018741R15 ABB Cable of connector
TB807 3BSE008538R1 ABB Modulebus Terminator
XVC722AE01 3BHB002751R0106 ABB Controller mainboard
VMIVME-7700-111000 GE Fully functional SBC processor module
VMIVME-3122 GE Reflection memory card
VMIVME-1150-123L GE 64 bit optical coupled digital input board
SPAJ110C ABB Ground fault relay
R43HCNAR2NSVS00 PACIFIC SCIENTIFIC Servo motor
IS200EPSMG1AED GE Servo terminal board
IC660TBA026M GE output module
HONEYWELL 900G32-0001 HONEYWELL HC900 controller
C600/10/1/1/1/00 ELAU Servo drive driver
369-HI-R-M-0-0-0-0 GE Motor management digital relay
VMIVME7740-841 GE Single board computer
VME-7807RC GE Single board computer
VMIVME-7452 GE VMIC Single-slot VME floppy disk/disk module
UNITROL 1000-7 ABB Excitation system
SST-PB3-PCU SST PROFIBUS DP master/slave station
SR469-CASE-469-P1-HI-A20-E GE 469 motor management relay
S739DVR0 GE Fiber optic converter
PR9268/303-000 EPRO sensor
PQM-T20-A GE POWER QUALITY METER
MVME162-213 MOTOROLA Embedded controller
MVME172-263/260 MOTOROLA Circuit control panel
MVI56E-SIE PROSOFT Ethernet communication module
IS215UCVEH2A GE UC200V primary controller
IS215ACLEH1A GE Circuit board
IS200RAPAG1B GE Rack power supply panel
IC698CMX016-ED GE Control memory switch module
IP-QUADRATURE GE Four channel orthogonal decoder
IC697MDL750E GE Loose output module
IC697BEM733 GE Genius remote I/O scanner module
IC697BEM731 GE 90-70 bus controller module
Reviews
There are no reviews yet.